Electronic Noses with Neural Networks for Odour Quality and Quantity

Stefan Markus Giebel

Department of Sanitary and Environmental Engineering

Overview

I. Introduction

A) Problem

B) Solution

II. Survey & Mathematical results

C) Survey

D) Neural networks

E) Logistic regression

F) Discriminant anylysis

III. Conclusion

F) Conclusion

G) Answer Tree

H) Results

Problem: Odour from canalization

Odour can not be assigned to a special substance

Responsible for odour:

- oxygen
- nitrate
- organic material
- sulphur and sulphur chemical compounds

The human nose doesn't smell only one substance.

The odour in canalization depends on a lot of factors:

- temperature
- raining water
- industrial water
- quantity of organic material
- velocity of water

In most cases we can only measure the situation at a time point, but not for a longer time period.

Problem: Avoiding odour

Avoiding odour

• oxygen, **0**₂

Disadvantage: High fire danger

hydrogene peroxide H₂O₂

Disadvantage : acidly

Calciumnitrat [NUTRIOX®]

Disadvantage : adorable

Costs: NUTRIOX® is sucessfull. The costs are 0.3 €/ m³ water

Mask of odour etc.

for avoiding odour we have to determine the odour quantity

Olfactometric measurement

Olfactometry: objective measurement of odour

Disadvantage:

- High costs
- Only a measurement for one time point

Unit

The odour unit is defined at the barrier of the concentration of the sniffable material 1 Odour unit (OU/m³) (DIN EN 13725 / VDI - RICHTLINIE 3881)

The test person informs us about the lowest concentration he can smell.

Difficulty: • Differences between test persons

Adequacy of test persons

Solution for a continuous measurement

There are three different kinds of sensor measurement:

- oscillating crystals
- electrical resistance
- optical measurement

for an unspecific measurement all methods are comparable with each other.

(for application in a big city (more than 1,5 Mio inhabitants) we decide to take the electrical resistance.

The electronic nose consists on many sensors.

The signals has to be interpreted for odour.

Necessary: An assignment f (sensorsignals) =odour quantity

We need a suitable mathematical procedure

Preprocessing for mathematical procedures

The continuous measurement of the electronic nose has to be assigned to an olfactrometic measurement*

Together with the company for canalization we have to find a barrier for a critical value of odour quantity

* After 5 hours there could be a difference between the olfactometric measurements and sensor signals

** We have no measurement with an exact value of 500 OU/m³

Neural networks

Irrelevant: Statement about one sensor

Relevant: Interaction between sensors

P(barrier > x| Sensorsignals)= *p*

Under the conditions of sensorsignals we get a probability

Further more: Non-linearity of concentrations

Neural networks Algorithm

Application of Logistic regression

Irrelevant: Interaction of sensors

Relevant: assignment

Similiar to one-layer neural network

P(barrier> x| barrier)= p

Application of Discriminant analysis

Application of Answer Tree

Irrelevant: multivariate

Relevant: Finding a decision tree

Example: Cut-off for target and sensor signals

Most relevant Sensor ,5" = 0 and next relevant Sensor $,4" = 1 \implies$ odour quantity ,1" with a probability 75 %

Easy to handle for the engineers

Either you determine the cut off- value (CHAID) or it could be determined by the procedure (CRT)

Results for Explanation^{*} (n₁=57 measurements)

	<500 OE(m ³	>500 OE/m ³	Total
Neural network	11 (64,7 %)	35 (87,5 %)	46 (80,7 %)
Logistic regression	11 (64,7 %)	35 (87,5 %)	46 (80,7 %)
Discriminant analysis	13 (76,4 %)	27 (67,5 %)	40 (70,2 %)
Answer Tree	0 (0 %)	40 (100 %)	40 (70,2 %)

Explanation: Using the known data

Explanation (n₁=57 measurements)

Explanation in one part of the sample (ca. 50%)

*

Prediction (n₂=58 measurements)

*

	<500 OE(m ³	>500 OE/m ³	Total
Neural networks	17 (68%)	30 (90,8%)	47 (81%)
Logistic regression	13 (52%)	26 (78,8%)	39 (67,2%)
Discriminance analysis	18 (72%)	24 (72,7%)	40 (70,2%)
Answer Tree	0 (0%)	40 (100%)	40 (70,2%)

*Prediction on unknown data: Validation

Prediction (n₂=58 measurements)

odour quantity in categoriesl

Prediction on unknown data : Validation

Shape Analysis for odour quality

Explosive materials

Conclusion

All procedures are usefull for estimation the odour quantity

For Answer Tree you have only a reduced number of sensors

Shape Analysis is usefull for odour quality

Forecast

More measurements

Improvement of measurements (on time olfactometric measurements)

Odour Profiles for every substance and mixture of substances

Electronic Noses with Neural Networks for Odour Quality and Quantity

Stefan Markus Giebel Department of Sanitary and Envoronmental Engineering Stefan.Giebel@gmx.de