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Coherent Bayesian Inference

William of Ockham, 1285-1349

Lentia non sunt multiplicanda praeter necessitatem.
3 : NS

Occam'’s razor: entities (model elements)
must not be multiplied beyond necessity.



Coherent Bayesian Inference

Coherent Bayesian Inference

Coherent Bayesian Inference is a method of the model comparison.
This method uses Bayesian inference two times:

© to estimate the posterior probability of the model itself and

© to estimate the posterior probability of the model parameters.



Coherent Bayesian Inference

Bayesian Comparison

Consider a finite set of models f, ..., fj; that fit the data D.
Denote prior probability of i-th model by P(f;). After the data have
come, the posterior probability of the model

P(DIf;)P(f)
5121 P(DIf)P(f)
The probability P(D|f;) of data D, given model f; is called the

evidence of the model f;.
Since the denominator for all models from the set is the same,

P(D) =) _ P(D|f)P(f),

Jj=1

P(fi|D) =

then
PFID) _ P(£)P(DIF)

P(fID)  P(f)P(DIf)
Assume the prior probabilities to be equal, P(f;) = P(f;).



Coherent Bayesian Inference

The Occam'’s razor

If , — is more complex model, then its distribution P(D|f,) has
smaller values (variance has greater values). If the errors of both
models are equal, then the simple model f; is more probable than
the complex model 5.

4 Evidence

P(DIf))
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P(DIf)




Coherent Bayesian Inference

A toy example of evidence computation

Let there be given the series {—1,3,7,1}. One must to forecast the
next two elements.
The model f;:

Xiy1 =X +4

gives the next elements 15, 19.

The model f:
Xj11 = 7X7,-3 + 9Xi2 + §
. 11 11 11

gives the next elements —19.9,1043.8.

Let the prior probabilities be equal or comparable.
Let each parameter of the models is in the set

{-50,...,0,...,50}.



Coherent Bayesian Inference

A toy example, continued

The parameters (n = 4, x; = —1) brings the proper model with

Zero-error.
The evidence of the model £, is
1 1
P(D|f;) = 101101 = 0.00010.
Let the denominators of the second models are in the set
{0,...,50}.

Take account of ¢ = —1/11 = —2/22 = —3/33 = —4/44.
The evidence of the model £ is

P(D|fc) = i ii ii ii —25%x 1012
101 101 50 101 50 101 50

The result of the model comparison is
P(D|f,) 0.00010

P(D|f.)  2.5x10-12°




Coherent Bayesian Inference

The 1%t level of the inference

At the first level one must to estimate the model parameters w,
given data D,
P(DIw, f)P(wl)

P(DIf)

P(w|D,f;) =

The model evidence P(D|f;) is not considered at this level.
To estimate parameters, approximate logarithm of the posterior
distribution of P(w|D, f;) by Taylor power series,

1
P(w|D, f;)~P(wup|D, f;) exp(—EAwTAAw)),
where Aw = w — wyp.

Here the matrix A is the covariance matrix at the neighborhood
of Wprip.



Coherent Bayesian Inference

The 2™ level of the inference

The second level of the Bayesian inference defines what the model
is more adequate for the given data. The posterior probability
of i-th model is given by

P(fD)xP(DIf)P(f).

Here P(D|f;) is the evidence of the model and the denominator at
the 1st level:

P(DI|f;) = /P(D[w, fi)P(w|f;)dw.

Assume the distribution P(w|D, f;)oxP(D|w, f;)P(w|f;) has a peak
at wyp. According to the Laplace approximation,

P(DIf;) = P(Dlwwp, f;)P(Wmp|fi) X ow|p;

evidence ~ maximum likelihood x Occam factor.



Coherent Bayesian Inference

Occam factor

P(w|D,f)
P(wlf) nilgh
(e 1
(o} et -
v ) _

The Occam factor is given by the variance of the model parameters.
The variable o,,p depends on the posterior distribution of the

parameters w.
The Occam factor shows the "compression"of the parameter space
when the data have come.



Coherent Bayesian Inference

An example of the method

P(DIf) S
), PWDSY |

)

P(WIf) f""lawu) *»

P(wif)
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Analysis of parameters

The process of the model construction

Get data
Assign initial models
Assign primitive functions
Assign admissible superpositions

—» Tune models

Evaluate hyperparameters

\ Estimate quality of models

Select models
Modify superpositions

\ Use primitive functions

Generate new models




Analysis of parameters

Let there be given

The samples:
{x1, ..., xn|x € RP} the independent variables,
{y1,..-,¥nly € R} the corresponding depended variables.
Denote by D the sample set {(xn, yn)}-

The primitive functions:
G ={glg: R x ... x R — R} parametric functions,
g=g(b,- - ..,-).
G defines the set of admissible superpositions F = {f;}
inductively by its elements g.

ﬁ = ﬁ(wa X)v

where w = by:bs:...:b,.



Analysis of parameters

A regression model of the optimal structure is to be found

y = fi(w,x) +v

One must find a model f; € F, which brings the maximum
to the target function p(w|D, «, 3, f;),

f; € F — the set of competitive models,
w — model parameters,
D — sample set (data),

«, 3 — regularization parameters.



Analysis of parameters

Target function

Given v ~ N(0, é) does not depend on x (homoscedacity),

exp(—BEp)
x,w,3,f)=p(Dlw,3,f) = ———=,
plylw.5.) = p(Dlw. 5.7) = %25
2 2
Ep= 1N, (F(xn) — )2, 3= (%)"
Given A — diagonal covariance matrix of the model parameters w,
exp(—Ew)
Af)=——-+
p(W| ) ) ZW(A) ?
Ew = IwT Aw Zu(A) = (27) 7 | A2
w 2 ’ w .
The diagonal of the covariance matrix A is a1, s, ..., aw. Each

hyperparameter corresponds to its own parameter.



Analysis of parameters

Error function and hyperparameters

According to the Bayesian rule, the target function

Diw, 3, f)p(w|A, f)

p(wlD. A, 4. ) = Pt DAL

the error function
1 7
S(w|A,B) = EW Aw + BEp,

and
p(W|D, Avﬁa f) (S8 exp(—S(w)).



Analysis of parameters

How to estimate the hyperparameters?

Maximize the model evidence p(D|A, ) according to A and (3

p(DIA, B) = / p(Dlw, A, B)p(w|A)dw — max.

Use the Laplace approximation,
1

P(DIA.f) = 5 le( 5 [ ealS(waw.

Substitute Zy(A), Zp(f) and S(w) and find the logarithm of it:

1 1 w 1
p(D|A, B) = exp(—S(wp))(27) 2 |H| 2.
(DIAB) = 5 a5 7o) P Swo)2r) ¥
w 1 N N % 1
Inp(D|A,B):—?In27\'—Eln\A\—E|n27r+Eln6—S(w0)+?InQW—EIn\H\:
L0 z5%(8) =

LAl = Mo+ Mg —pEp — Bu— L
=——1In — —In27r+ —InB — — ——1n .
2 2 2 PP T W,

—S(wo)



Analysis of parameters

How to estimate the hyperparameters?

As the result of the evidence maximization we obtain
Qj
)\j + q;

20jE,, = W — v, where ~; =

and

w
28Ep =N =) .
j=1

Estimate the hyperparameters a and [3; iteratively,

w

W N—=>
ahew — ﬁnew — Jj=1
J 2E,, 2EL



Model generation

Parameter optimization

The model generation algorithm contains three steps and runs
iteratively.

1. Optimize parameters and hyperparameters of every model
from the generated set ¥ = {f1,...,fy}:

i

WMP = al’g min S(W|D7A>ﬁ7 fl)
w



Model generation

Element exchange

2. Exchange elements of two models:
© select randomly a pair of model indexes i,j € {1,..., M},
@ select from the models f; and f; the elements gj and gj,
© create new models £/ n f/.

times2 frac2
plus2 linear times2  sqrt
k |in“ear t parabolalinear ¢
K arctan K

K



Model generation

Element modification

3. Modify elements of the new models {f/}:

@ select a model element gjx from the model f;,

@ select from set G an element gs (it must have the same
number of arguments as gi),

© gix change the model element g for the primitive gs.

s
parabolalinear  t
arcfcan K

K



Think of a model

Let it be y = f(w,x) = sin(x1) * sin(wix2 + wo).

Wis!
SN

&
NS




Given data

The corresponded sample set is shown; it has 380 samples.




Given primitive functions

Function  Description Parameters
g(ba X1, X2)
plus y=x1+x -
times Y = X1X0 -
g(b,Xl)
divide y=1/x -
multiply y = ax a
add y=x+a a
2
normal y = \/%Wexp (—(X;JE) > +a MNo,€a
linear y=ax+b a, b
parabolic y =ax?+ bx+c¢ a, b, c
sin y = sin(x) -

logsig y:m+a N\ o€ a



Set of the generated models

Let the generated models F = {f;} be a set
of admissible superpositions
of the primitive functions G = {g}.



Expert information

Experts assign the initial models

fi: y=linear(xy),
fo: y = normal (x2).

And the initial conditions

© the model complexity:
number of primitives in a superposition g no more than 8,
number of parameters w no more than 10;

© the target function is sum of squared errors, SSE.



Competitive models

Given data




Competitive models

normal(wy.3,x2)

normal

X2




Competitive models

plus2(0,times2(0, plus2(D,x2,x1),linear(wy.2,x1)),linear(ws.4,x2))

times2  linear

plus2 linear X2

X2 X1 X1




Competitive models

times2(0,times2(,plus2(0,xz,linear(w1.2,x1)),linear(ws.4,x1)),x2)

times2
times2 X2

plus2 linear

X2 linear X1

X1




Competitive models

times2(0),times2(),plus2(0, parabola(wi.3,x2),x2),sin(0,x1)),sin(0,x1))

times2 .
times2 sin
plus2 —sin X
para:bola X2 X

X2




Competitive models

times2(0, plus2(0,linear(w1.2,x1),sin(0,x2)),sin(,x1))

times2
plus2 sin
linear  sin X

X1 X2




Competitive models

times2(0, plus2(®,parabola(ws.3,parabola(wa.e,x2)),sin(0,x1)),sin(0,x1))

times2
plus2 ~ sin
parabola sin Xl

parabola X1

X2




Competitive models

times2(0, plus2(0,plus(wy,linear(wa:3,x1)),linear(wa.5,x2)),sin(0,sin(0,x1)))

plus2 sin

plus linear sin

, x
linear X2 1

X1




Competitive models

times2((),parabola(wj.3,linear(wa:s,x2)),linear(we.7,sin(0,x1)))

parabolalinear

linear sin

X2 X1




Competitive models

times2(0, plus2(@,parabola(wi.3,x2),sin(0,x2)),sin(0,x1))

times2
plus2 sin
parabola sin Xl

X2 X2




Competitive models

times2(0,sin(0,linear(w1.2,x2)),sin(0,x1))

times2
sin sin
linear X1

X2




Practice

Practical example: automotive

measure data
— — —regression

The pressure in the combusting camera of the diesel engine:
x — crankshaft rotation angle, normalized,
y — pressure, normalized,
the data set contain 4000 samples.



Practice

The selected models

o+ +.. 0+ e
X 4+ h + X [ + X X
hohox + b x s b
X x hohox hoc x
X x x x
Legend: h — gaussian y = A\(2ma "/ ?)exp(—(x — £)*(2072) + a),
¢ — cubic y = ax® 4+ bx® + cx + d, | — linear y = ax + b.

f = g1(g2(g3(g4(g5(x), g6(x)), g7(x)), x), g8 (x))-
The full representation of the Model 2 is

y = (ax+ b)~ (x+zrglexp< (;UISI))+3,>.



Practice

Conclusion

@ Hyperparameters depend on the variance of model parameters.

@ If the variance is large the model parameter and corresponded
element could be eliminated.

Outline

@ Algorithms of inductive model generation use expert-defined
set of primitives, specially designed for an application.

@ Experts could explain obtained models in terms of the
application.

@ Initial expert models could be advanced by the model
generation algorithms.



