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Introduction

Deep learning is a powerful function that mimics the human brain in terms of

its working style for decision making with data processing and pattern

creation.

Figure 1: Classification with deep learning1

1https://databricks.com/blog/2017/06/06/databricks-vision-simplify-large-scale-deep-

learning.html
M. Kütük (METU) Introduction to Deep Learning 4 / 37



Introduction

Deep learning is widely used areas such that

Image/Text Classification,

Speech Recognition2,

Image Segmentation3.

2https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-

recognition-with-deep-learning-28293c162f7a
3http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review
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Introduction & Goals

There are also some areas of mathematics that uses deep learning:

Approximation Theory,

Numerical Optimization,

Linear Algebra.

Our aims are

to give brief introduction for deep learning,

to define some terms related to this area,

to apply deep learning for a small example in Matlab.
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Scheme of the Supervised Learning
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Example Problem

A map, which shows the oil drilling sites, is given below. The circles (class A)

denote the successful outcome while crosses (class B) are the unsuccessful

outcome.

Figure 2: Oil Drilling Sites
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A Simple Model:The Perceptron

Figure 3: MIT’s 6.S191:Introduction to Deep Learning Course4

4http://introtodeeplearning.com/2019/materials/2019 6S191 L1.pdf
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A Simple Model:The Perceptron
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A Simple Model:The Perceptron
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A Simple Model:The Perceptron
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Activation Functions:Sigmoid Function
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Activation Functions:Hyperbolic Tangent Function
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Activation Functions:ReLU Function
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Activation Functions:Leaky ReLU Function
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Multilayer Perceptron(MLP)
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Multilayer Perceptron(MLP)

The activation function can be written as

σ(WX + b)

Input of these model can be shown as

X =

x1

x2
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Multilayer Perceptron(MLP)

The weight matrix and bias vector of the 2nd layer can be shown as

W [2] =

W 31 W 32

W 41 W 42

 b[2] =

b3

b4


The output of the 2nd layer can be obtained asx3

x4

 = σ

(W 31x1 + W 32x2 + b3

W 41x1 + W 42x2 + b4

)
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Multilayer Perceptron(MLP)

The activation function of the 3rd layer can be written as

σ(W [3]σ(W [2]X + b[2]) + b[3])

The weight matrix and bias vector of the second layer can be shown as

W [3] =


W 53 W 54

W 63 W 64

W 73 W 74

 b[3] =


b5

b6

b7
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Multilayer Perceptron(MLP)

The output of the 3rd layer can be obtained as
x5

x6

x7

 = σ

(
W 53x3 + W 54x4 + b5

W 63x3 + W 64x4 + b6

W 73x3 + W 74x4 + b7


)
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Multilayer Perceptron(MLP)

The activation function of the 4th layer can be written as

σ(W [4]σ(W [3]σ(W [2]X + b[2]) + b[3]) + b[4])

The weight matrix and bias vector of the third layer can be shown as

W [4] =

W 85 W 86 W 87

W 95 W 96 W 97

 b[4] =

b8

b9
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Multilayer Perceptron(MLP)

The output of the 4th layer can be obtained asx8

x9

 = σ

(W 85x5 + W 86x6 + W 87x7 + b8

W 95x5 + W 96x6 + W 97x7 + b9

)
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Multilayer Perceptron(MLP)

As a result, the overall model can be summarized as

Input:

x1

x2

 Output:F (X ) =

x8

x9

 =⇒ F : R2 −→ R2,

and this model includes totally 23 unknown parameters (16 weight

parameters, 7 bias parameters).
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Multilayer Perceptron(MLP)

Aim is to produce a classifier by optimizing over all unknown parameters.

We will require F (x) to be close to [1, 0]T for data points in class A and

close to [0, 1]T for data points in class B. Then, the classifier is:

class A, if F 1(x) > F 2(x)

class B, if F 1(x) < F 2(x)

This requirement on F is specified through a cost function.

y(x i ) =

{[
1 0

]T
, if x i is in class A[

0 1
]T
, if x i is in class B
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Cost Function

Then the cost function can be shown as

Cost(W [2],W [3],W [4], b[2], b[3], b[4]) =
1

10

10∑
i=1

1

2
||y(x i )− F (x i )||22

where y(x i ) is the ground truth (labeled data) and F (x i ) is the model output.

This is a quadratic cost function (aka L2-loss function).

Choosing the weights and biases in a way that minimizes the cost function is

referred to as training the network.

M. Kütük (METU) Introduction to Deep Learning 27 / 37



Steepest Descent Method

The unknown parameters can be stored as a single vector that we call p.

For our example, p ∈ R23.

Generally, p ∈ Rs and Cost : Rs −→ R.

The classical method is steepest descent or gradient descent.

Cost(p + ∆p) ≈ Cost(p) +
s∑

r=1

∂Cost(p)

∂pr
∆pr =⇒ From Taylor Series Exp.

(∇Cost(p))r =
∂Cost(p)

∂pr
=⇒ Cost(p + ∆p) ≈ Cost(p) +∇Cost(p)T∆p

We have to choose ∆p such that ∇Cost(p)T∆p < 0.

Therefore, we should choose ∆p to lie in the direction −∇Cost(p). We can

obtain

pk+1 = pk − η∇Cost(p)

where η is the stepsize (aka learning rate).
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Steepest Descent Method

The cost function for individual terms is

C (x i ) =
1

2
||y(x i )− a[L](x i )||22

∇Cost(p) =
1

N

N∑
i=1

∇C (x i )(p)

When there are a large number of parameters and a large number of training

points, computing the gradient vector ∇Cost(p) at every iteration of the

steepest descent method can be expensive.
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Stochastic Gradient Descent(SGD)

An alternative way is to replace the mean of the individual gradients over all

training points by the gradient at a single, randomly chosen, training point.

1 Choose an integer i uniformly at random from {1,2,3,...,N}
2 Update p −→ p − η∇C(x i )(p)

As the iteration proceeds, the method sees more training points. So the cost

decreases after a while.
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Backpropagation

An application of the chain rule.

To compute the gradient of the error in the output layer, one has to compute

the gradient iteratively layer by layer from the output layer to the input layer.
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Backpropagation

Let’s consider the example given below

o = g(neto) = g

(
7∑

i=5

W oix i

)
∂E

∂W oi
=
∂E

∂o

∂o

∂neto

∂neto

∂W oi

where ∂neto
∂W oi

= x i and ∂o
∂neto

= g ′ (derivative of the activation function).
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Oil Drilling Sites Problem

Let’s turn back to our problem and try to solve it in Matlab by using

4-layered MLP which is shown before.
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Deep Learning Related Courses

CENG562 - Machine Learning

CENG783 - Deep Learning

CENG564 - Pattern Recognition

MMI727 - Deep Learning: Methods and Applications

EE583 - Pattern Recognition

IAM557 - Statistical Learning and Simulation
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Optimization Related Courses

MATH402 - Introduction to Optimization

IAM566 - Numerical Optimization

EE553 - Optimization
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For More Information

http://iam.metu.edu.tr/scientific-computing

https://iam.metu.edu.tr/scientific-computing-lecture-series

https://www.facebook.com/SCiamMETU/

...thank you for your attention !
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