
Scientific Computing Lecture Series
Introduction to MATLAB Programming

Eda Oktay*

∗Scientific Computing, Institute of Applied Mathematics

Lecture II
Scripts and Functions, Control Loops and Advanced Data Structures

Eda Oktay (METU) MATLAB Lecture II 1 / 40

Lecture II–Outline

1 Scripts and Functions

2 Control Loops

3 Advanced Data Structures

Eda Oktay (METU) MATLAB Lecture II 2 / 40

1 Scripts and Functions

2 Control Loops

3 Advanced Data Structures

Eda Oktay (METU) MATLAB Lecture II 3 / 40

M-files

Text files containing MATLAB programs can be called from

– the command line

– the M-files

Two kind of M-files:

– Scripts

– Functions

Eda Oktay (METU) MATLAB Lecture II 4 / 40

A Precaution

Be careful naming files!

It’s easy to get unexpected results:

– if you give the same name to different functions

– if you give a name that is already used by MATLAB

Check new names with the command which.

It is also useful to include some error checking in your functions.

Eda Oktay (METU) MATLAB Lecture II 5 / 40

M-Files: Scripts

Scripts are

– collection of commands executed in sequence

– written in the MATLAB editor

– saved as MATLAB files (.m extension)

To create an MATLAB file from command-line

>> edit helloWorld.m

To open scripts from command window

>> open helloWorld.m

Eda Oktay (METU) MATLAB Lecture II 6 / 40

* Means that it's not saved

Line numbers

Comments

MATLAB file
path

Help file

Possible breakpoints

Debugging tools
Real-time
error check

COMMENT!

– Anything following a % is seen as a comment.

– The first contiguous comment becomes the script’s help file.

– Comment thoroughly to avoid wasting time later.

Note : Scripts are somewhat static, since there is no input and no explicit output.

All variables created and modified in a script exist in the workspace even after it has stopped running.

Eda Oktay (METU) MATLAB Lecture II 7 / 40

M-Files: Functions

Help file

Function declaration

InputsOutputs

Functions look exactly like scripts, but for ONE difference: Functions must have a function

declaration:

function outArguments = NameOfFunAsYouLike(inArguments)

Variable scope: Any variables created within the function but not returned disappear after

the function stops running.

Eda Oktay (METU) MATLAB Lecture II 8 / 40

Input

input prompt the user to input a number or string

>> input(’Enter a number:’, ’s’)

Enter a number: 5

ans = 5

If a character or string input is desired, ’s’ must be added after the prompt.

>> name = input(’Enter a name: ’)

Enter your name: Mehmet

Error using input

Undefined function or variable ’Mehmet’.

>> name = input(’Enter a name: ’,’s’)

Enter your name: Mehmet

name = Mehmet

Eda Oktay (METU) MATLAB Lecture II 9 / 40

Number of Inputs/Outputs

Query number of inputs passed to a function

nargin

Do not try to pass more than in function declaration

Determine number of outputs requested from function

nargout

Do not request more than in function declaration

function [o1,o2,o3] = narginout ex(i1,i2,i3)

fprintf(’Number inputs = %i;\t’,nargin);

fprintf(’Number outputs = %i;\n’,nargout);

o1 = i1; o2=i2; o3=i3;

end

>> narginout ex(1,2,3);

Number inputs = 3; Number outputs = 0;

>> [a,b]=narginout ex(1,2,3);

Number inputs = 3; Number outputs = 2;

Eda Oktay (METU) MATLAB Lecture II 10 / 40

Length of Input/Output Argument List

Input-output argument list length unknown or conditional

– Think of plot, get, set and the various Name-Property pairs that can be

specified in a given function call

varargin, varargout allow number of inputs and outputs to be determined by
the function call

funtion [varargout] = circ(varargin)

r = zeros(nargin,1);

for in = 1:nargin

r(in) = varargin{in};

end

diam = r*2;

area = pi*(r.^2);

varargout = {diam,area};

end

Eda Oktay (METU) MATLAB Lecture II 11 / 40

Suppose we want to write a function that returns the color specification for

blue, in either the RGB color model (by default) or the HSV model:

function b = blue(varargin)

if nargin < 1

varargin = {’rgb’};

end

switch(varargin{1})

case ’rgb’

b = [0 0 1];

case ’hsv’

b = [2/3 1 1];

otherwise

error(’Unrecognized color model.’)

end

Eda Oktay (METU) MATLAB Lecture II 12 / 40

Anonymous Functions

Functions without a file

– Stored directly in function handle

– Store expression and required variables

– Zero or more arguments allowed

– Nested anonymous functions permitted

Array of functions handle not allowed; function handle may return array

>> f = @(x,y) x^2 + y^2;

>> f(1,2)

ans = 5

>> ezplot(@(x,y) x.^4 + y.^4 -1,[-1,1])

>> ezsurf(@(x,y) exp(-x.^2 -2*y.^2))

Eda Oktay (METU) MATLAB Lecture II 13 / 40

Local Functions

A given MATLAB file can contain multiple functions:

The first function is the main function

– Callable from anywhere, provided it is in the search path

Other functions in file are local functions

– Only callable from main function or other local functions in same file

– Enables modularity (large number of small functions) without creating a large

number of files

– Unfavorable from code reusability standpoint

Eda Oktay (METU) MATLAB Lecture II 14 / 40

Local Function Example

Contents of loc func ex.m

function main out = loc_func_ex()

main out = [’I can call the ’,loc func()];

end

function loc_out = loc_func()

loc_out = ’local function’;

end

Command-line

>> loc_func_ex()

ans =

I can call the local function

>> [’I can’’t call the ’,loc_func()]

??? Undefined function or variable ’loc_fun

Eda Oktay (METU) MATLAB Lecture II 15 / 40

1 Scripts and Functions

2 Control Loops

3 Advanced Data Structures

Eda Oktay (METU) MATLAB Lecture II 16 / 40

Rational and Logical Operators

Boolean values: zero is false, nonzero is true

Some of the logical operators:

Operator Meaning

<,<=, >,>= less than, less than or equal to, etc.

==, ∼= equal to, not equal to

& logical AND

| logical OR

∼ logical NOT

all all true

any any true

xor Xor

Eda Oktay (METU) MATLAB Lecture II 17 / 40

Logical Indexing

Construct a matrix R

>> R = rand(5)

R =

0.8147 0.0975 0.1576 0.1419 0.6557

0.9058 0.2785 0.9706 0.4218 0.0357

0.1270 0.5469 0.9572 0.9157 0.8491

0.9134 0.9575 0.4854 0.7922 0.9340

0.6324 0.9649 0.8003 0.9595 0.6787

Test for some logical cases

>> R(R<0.15)’

ans =

0.1270 0.0975 0.1419 0.0357

>> isequal(R(R<0.15), R(find(R<0.15)))

ans =

1

Eda Oktay (METU) MATLAB Lecture II 18 / 40

If/Else/Elseif

The general form of the if statement is

if expression1

statements1

elseif expression2

statements2
...

else

statements

end

No need for parentheses:command blocks are between reserved words

Eda Oktay (METU) MATLAB Lecture II 19 / 40

Switch

The general form of the switch statement is

switch variable

case variable value1

statements1

case variable value2

statements2
...

otherwise (for all other variable values)

statements

end

Eda Oktay (METU) MATLAB Lecture II 20 / 40

Try–Catch

The general form:

try

statements1

catch

statements2

end

A simple example:

a = rand(3,1);

try

x = a(10);

catch

disp(’error’)

end

Eda Oktay (METU) MATLAB Lecture II 21 / 40

For

for loops: use for a known number of iterations

The basic syntax is

for variable = expr

statements;

end

A simple example:

M = rand(4,4); suma = 0;

for i = 1:4

for j = 1:4

suma = suma + M(i,j);

end

end

fprintf(’sum = %d\n’,suma);

Eda Oktay (METU) MATLAB Lecture II 22 / 40

While

Don’t need to know number of iterations

The basic syntax is

while a logical test

commands to be executed

when the condition is true

end

A simple example:

S=1; n=1;

while S+(n+1)^2 < 100

n=n+1; S=S+n^2;

end

>> [n,S]

ans = 6 91

Beware of infinite loops!

Eda Oktay (METU) MATLAB Lecture II 23 / 40

Remarks

break - immediately jumps execution to the first statement after the loop.

return - immediately end a functions routine.

Precaution: Avoid i and j if you are using complex values.

Loops are very inefficient in MATLAB. Only one thing to do: AVOID THEM

!!!

Try using built–in–functions instead

Allocating memory before loops greatly speeds up computation times !!!

Eda Oktay (METU) MATLAB Lecture II 24 / 40

Find

find returns indices of nonzero values. It can simplify code and help avoid

loops

basic syntax: index = find(condition)

>> x = rand(1,10)

x =

Columns 1 through 5

0.4505 0.0838 0.2290 0.9133 0.1524

Columns 6 through 10

0.8258 0.5383 0.9961 0.0782 0.4427

>> inds = find(x>0.4 & x<0.7)

inds =

1 7 10

>> x(inds)

ans =

0.4505 0.5383 0.4427

Eda Oktay (METU) MATLAB Lecture II 25 / 40

1 Scripts and Functions

2 Control Loops

3 Advanced Data Structures

Eda Oktay (METU) MATLAB Lecture II 26 / 40

Scoping Exceptions

A global variable is a factor whose value can be accessed and changed from

any other workspaces

Any variable may be declared global

The trouble with global variables is that they do not scale well to large or

even moderately sized projects

A persistent variable is a factor whose value is preserved between invocations

to that particular function.

Any variable may be declared global

It is less general than a global variable and requires a little care to ensure

correct use

Eda Oktay (METU) MATLAB Lecture II 27 / 40

Persistent variables can be used to record information about a function’s

internal state, or to preserve costly preliminary results that can be reused

later.

Compute the Fibonacci numbers:

function y = fib(n)

persistent f

if length(f) < 2,

f = [1 1];

end

for k = length(f)+1:n

f(k) = f(k-2) + f(k-1);

end

y = f(1:n);

In future calls to fib, any previously computed members of the sequence are

simply accessed rather than recomputed.

Eda Oktay (METU) MATLAB Lecture II 28 / 40

Cell Arrays

Cell arrays are a mechanism for gathering dissimilar objects into one variable.

Indexed like regular numeric arrays, but their elements can be anything,

including other cell arrays.

Cell arrays can have any size and dimension, and their elements do not need

to be of the same size or type.

Because of their generality, cell arrays are mostly just containers

Created or referenced using curly braces {} rather than parentheses.

Eda Oktay (METU) MATLAB Lecture II 29 / 40

3x3 Matrix

1.2 -3 5.5

-2.4 15 -10

7.8 -1.1 4

3x3 Cell Array

32

27 1

18

J o h n

M a r y

L e o

2

4

[]

Cell initialization:

>> a = cell(3,2);

>> a = {’hello world’, [1,5,7], rand(2,4)}

To access a cell element, use curly braces {}
>> a = {’hello world’, [1,5,7], rand(2,4)}

a = ’hello world’ [1x3 double] [2x4 double]

>> a{1,1}

ans = hello world

>> a{1,3}

ans =

0.9058 0.9134 0.0975 0.5469

0.1270 0.6324 0.2785 0.9575

Eda Oktay (METU) MATLAB Lecture II 30 / 40

T = cell(1,9);

T(1:2) = { [1], [1 0] };

for n=2:8

T{n+1}=[2*T{n} 0] - [0 0 T{n-1}];

end

>> T

T =

Columns 1 through 5

[1] [1x2 double] ... [1x5 double]

Columns 6 through 9

[1x6 double] [1x7 double] ... [1x9 double]

Eda Oktay (METU) MATLAB Lecture II 31 / 40

Structures

Structures are essentially cell arrays that are indexed by a name rather than

by number.

The field values can be anything.

Values are accessed using the dot notation.

>> student.name = ’Moe’;

>> student.homework = [10 10 7 9 10];

>> student.exam = [88 94];

>> student

student =

name: ’Moe’

homework: [10 10 7 9 10]

exam: [88 94]

Eda Oktay (METU) MATLAB Lecture II 32 / 40

Add another student:

>> student(2).name = ’Curly’;

>> student(2).homework = [4 6 7 3 0];

>> student(2).exam = [53 66];

>> student

student =

1x2 struct array with fields:

homework

exam

Array and field names alone create comma-separated lists of all the entries in the

array.

>> roster = {student.name}

roster =

’Moe’ ’Curly’

Eda Oktay (METU) MATLAB Lecture II 33 / 40

cell2mat – cell2struct

cell2mat Convert cell array to ordinary array of the underlying data type
C = {[1], [2 3 4];

[5; 9], [6 7 8; 10 11 12]}

C =

{[1]} {1x3 double}

{2x1 double} {2x3 double}

A = cell2mat(C)

A =

1 2 3 4

5 6 7 8

9 10 11 12

cell2struct Convert cell array to structure array
>> fields={’number’,’name’,’value’};

>> c={’one’,’Hamdullah’,3;’two’,’Hamdi’,7};

>> cStruct=cell2struct(c,fields,2)

cStruct = 2x1 struct array with fields:

number

name

value

Eda Oktay (METU) MATLAB Lecture II 34 / 40

End of Lecture

1 Scripts and Functions

2 Control Loops

3 Advanced Data Structures

Eda Oktay (METU) MATLAB Lecture II 35 / 40

Exercises I

In order to get and save current date and time, write a script by following

steps:

Create a variable start using the function clock

What is the size of start?

What does start contain? See help clock

Convert the vector start to a string. Use the function datestr and name the

new variable startString

Save start and startString into a mat file named startTime

Eda Oktay (METU) MATLAB Lecture II 36 / 40

Exercises II

If A is a square matrix (i.e. of dimension n × n), the matrices cos(A) and sin(A) can defined by the

formulas

cos(A) =
∞∑
k=0

(−1)k
A2k

2k!
, sin(A) =

∞∑
k=0

(−1)k
A2k+1

(2k + 1)!
,

respectively. The partial sums

CN (A) =

N−1∑
k=0

(−1)k
A2k

2k!
SN (A) =

N−1∑
k=0

(−1)k
A2k+1

(2k + 1)!

can thus be used to approximate the matrices cos(A) and sin(A).

Write a function whose inputs are a square matrix A and a tolerance number (TOL), and whose ouputs are the matrices cos(A) and

sin(A). The outputs should be obtained by using Matlab to compute the sequences CN (A), and SN (A), N = 1, 2, . . . and stopping

when the maximum of the absolute values of the entries of the matrix CN+1(A) − CN (A) and SN+1(A) − SN (A) is less than TOL.

(Note that cos(A) and sin(A) is NOT the matrix obtained by computing the cosine of the individual entries of the matrix)

(Hint: Use the while loop as well as the command max.)

Let  a11 a12

a21 a22


where a11, a12, a21a22 are the last 4 digits of your student number. Use the above function to compute cos(A) and sin(A). Save your

answers in the variables Answer1 and Answer2, respectively. Use Matlab to compute the matrix (cos(A))2 + (sin(A))2. Save your

answer in the variables Answer3.

Eda Oktay (METU) MATLAB Lecture II 37 / 40

Exercises III

Write a function whose input is a positive integer and whose outputs a matrix

and a vector such that A = (aij), where aij = i/j and xj = j , respectively.

Display a warning message if n is nonpositive by using fprintf command.

Eda Oktay (METU) MATLAB Lecture II 38 / 40

Exercises IV

Write a function to compute the factorial value of a single scalar argument.

This function should have the following components:

An if statement which returns an error message if the argument is negative by

using disp command.

An elseif statement which returns an error message if the argument is not an

integer. You should use either the built-in round, floor or ceil functions to

test for non-integers.

An else statement with an embedded for loop that does the actual factorial

calculation. Make sure that your function is able to handle any non-negative

integer, including 0.

Eda Oktay (METU) MATLAB Lecture II 39 / 40

For More Information

http://iam.metu.edu.tr/scientific-computing

https://iam.metu.edu.tr/scientific-computing-lecture-series

https://www.facebook.com/SCiamMETU/

https://www.instagram.com/scmetu/

...thank you for your attention !

Eda Oktay (METU) MATLAB Lecture II 40 / 40

http://iam.metu.edu.tr/scientific-computing
https://iam.metu.edu.tr/scientific-computing-lecture-series
https://www.facebook.com/SCiamMETU/?ref=bookmarks
https://www.instagram.com/scmetu/

	Scripts and Functions
	Control Loops
	Advanced Data Structures

