
Scientific Computing Lecture Series
Introduction to MATLAB Programming

Hamdullah Yücel*

∗Scientific Computing, Institute of Applied Mathematics

Lecture I
Basic Commands, Arrays and Matrices, Functions

H. Yücel (METU) MATLAB Lecture I 1 / 57

Computational Science

Experiment

Theory Computational

Science

Computational Science now constitutes what many call the third pillar of the scientific

enterprise, a peer alongside theory and physical experimentation.

Report to the President:”Computational Science : Ensuring America’s Competitiveness”,

June 2005.

H. Yücel (METU) MATLAB Lecture I 2 / 57

Scientific Computing

Mathematics

Computer
Science Natural

Sciences

SC

Scientific Computing

= Computational Science

= Computational Science and Engineering

= Scientific Computation

= Computational Mathematics

0Quoted by https://en.wikipedia.org/wiki/Computational science
H. Yücel (METU) MATLAB Lecture I 3 / 57

Scientific Computing Program

SCIENTIFIC

COMPUTING

Mathematical

Modelling and

Application

Computational

Fluid

Dynamics

Computational

Biology

Computational

Mechanics

Computational

Electro-

magnetic

Computational

Finance

Portfolio

Optimization Algorithmic

Trading

Operations

Research

(Non)Linear

Programming

Data Science

Big Data

Statistical

Learning and

Data Mining

Computational

Mathematics

& Simulation

High

Performance

Computing

PDE-

Constrained

Optimization

Uncertainty

Quan-

tification

Model Order

Reduction

Adaptive

Mesh

Generation

H. Yücel (METU) MATLAB Lecture I 4 / 57

For More Information

http://iam.metu.edu.tr/scientific-computing

https://www.facebook.com/SCiamMETU/

H. Yücel (METU) MATLAB Lecture I 5 / 57

https://www.facebook.com/SCiamMETU/?ref=bookmarks

Lecture Information

MATLAB Lecture Series is organized by members of Scientific Computing Program of IAM:

October 14: Hamdullah Yücel

Basic Commands, Arrays and Matrices, Functions,

October 15: M. Alp Üreten

Control Loops, Advanced Data Structures, Graphics and Visualizations

October 21: Mustafa Kütük

Introduction to Deep Learning for Applied Mathematicians with MATLAB

H. Yücel (METU) MATLAB Lecture I 6 / 57

Lecture I–Outline

1 Introduction to MATLAB

2 Data Structures: Arrays and Matrices

3 Operators

4 Sparse Matrices

5 Scripts and Functions

H. Yücel (METU) MATLAB Lecture I 7 / 57

1 Introduction to MATLAB

2 Data Structures: Arrays and Matrices

3 Operators

4 Sparse Matrices

5 Scripts and Functions

H. Yücel (METU) MATLAB Lecture I 8 / 57

What is MATLAB ?

Matlab is a high–level language and interactive environment that enables you

to perform computationally intensive tasks. It was originally designed for

solving linear algebra type problems using matrices. It’s name is derived from

MATrix LABoratory.

H. Yücel (METU) MATLAB Lecture I 9 / 57

MATLAB System

Desktop Tools and Development Environment

Includes the MATLAB desktop and Command Window, an editor and

debugger, a code analyzer, browsers for viewing help, the workspace, files, and

other tools.

Mathematical Function Library

Vast collection of computational algorithms ranging from elementary

functions, like sine, cosine, and complex arithmetic, to more sophisticated

functions like matrix inverse, matrix eigenvalues, Bessel functions, and fast

Fourier transforms.

Language

The MATLAB language is a high-level matrix/array language with control flow

statements, functions, data structures, input/output, and object-oriented

programming features.

H. Yücel (METU) MATLAB Lecture I 10 / 57

Continue...

Graphics

MATLAB has extensive facilities for displaying vectors and matrices as graphs,

as well as editing and printing these graphs. It also includes functions that

allow you to customize the appearance of graphics as well as build complete

graphical user interfaces on your MATLAB applications.

External Interfaces

The external interfaces library allows you to write C and Fortran programs that

interact with MATLAB.

H. Yücel (METU) MATLAB Lecture I 11 / 57

MATLAB Interface

Command Window: Here you can give MATLAB commands typed at the prompt, >>.

Current Directory: Directory where MATLAB looks for files.

Workspace: Shows what variable names are currently defined and some info about their

contents.

Command History: History of your commands.

H. Yücel (METU) MATLAB Lecture I 12 / 57

Helps/Docs

MATLAB is huge! - there is no way to remember everything you will need to

know.

help command - shows in the Commmand Window all the ways in which you

can use the command.

doc command - brings up more extensive help in a separate window.

lookfor command- searches for the keyword.

>> help sin

SIN Sine of argument in radians.

SIN(X) is the sine of the elements of X.

See also asin, sind.

Overloaded methods:

codistributed/sin

Reference page in Help browser

doc sin

H. Yücel (METU) MATLAB Lecture I 13 / 57

Basic Commands

MATLAB records in the workspace and command history everything you

write in the command window, so:

clear variable

deletes variable from memory (and workspace)

clear all

deletes all variables from memory (and workspace)

clc

cleans command window

save

save variables to a file (.mat format)

load

load variable bindings into the environment (look at workspace, the variables a

is back)

MATLAB’s command window works like a Linux terminal

cd, mkdir, rmdir, ls, . . .

H. Yücel (METU) MATLAB Lecture I 14 / 57

Basic Commands

Some commands used to interact with MATLAB

what

returns the MATLAB files (.m , .mat) in the current directory

who

returns the variables in your workspace

whos

returns the variables in the workspace with additional info (size, dimensions)

Try typing why in the command window. You will see that MATLAB is also a

Philosopher!

H. Yücel (METU) MATLAB Lecture I 15 / 57

1 Introduction to MATLAB

2 Data Structures: Arrays and Matrices

3 Operators

4 Sparse Matrices

5 Scripts and Functions

H. Yücel (METU) MATLAB Lecture I 16 / 57

Variables

MATLAB is a weakly typed language

No need to initialize variables!

Just assign some value to a variable name, and MATLAB will automagically

understand its type

x = 3 double

x = ’hello’ char

MATLAB supports various types, the most often used are

64-bit double (default)

16-bit char

Most variables you will deal with will be vectors or matrices of doubles or

chars

Other types are also supported: complex, symbolic, 16-bit and 8-bit integers,

etc.

H. Yücel (METU) MATLAB Lecture I 17 / 57

Variables

Naming Conventions

Have not to be previously declared

Variable names can contain up to 63 characters

To create a variable, simply assign a value to a name

>> var1 = 1903;

>> myStrings = ’merhaba’;

Variable names

first character must be LETTER

after that, any combination of letters, numbers and

allowable: NetCost, Left2Pay, X3, BJK1903

not allowable: Net-Cost, 1903BJK, %x, @sign

Variable names are case sensitive (var1 is different from Var1)

H. Yücel (METU) MATLAB Lecture I 18 / 57

Variables

Avoid to use built–in variables such as

ans Default variable name for results

eps Smallest incremental number

pi Value of π

inf Infinity

NaN Not a number e.g. 0/0

i and j represent complex numbers

H. Yücel (METU) MATLAB Lecture I 19 / 57

Scalars

A variable can be given a value explicitly (shows up in workspace!)

>> a = 1903

Or as a function of explicit values and existing variables

>> c = 2.4*24-4*a

To suppress output, and the line with a semicolon ;

>> h = 22/7;

H. Yücel (METU) MATLAB Lecture I 20 / 57

Arrays

Like other programming languages, arrays are an important part of MATLAB

Two types of arrays

matrix of numbers (either double or complex)

cell array of objects (more advanced data structure)

Row vector: comma or space separated values between brackets

>> row = [1 4 6 7]

>> row = [1,4,6,7]

Column vector: semicolon separated values between brackets

>> column = [1.4;2;pi]

Size of a vector: length

>> l = length(column)

H. Yücel (METU) MATLAB Lecture I 21 / 57

Special Vector Constructors

linspace()

>> a = linspace(0,10,5)

a =

0 2.5000 5.0000 7.5000 10.0000

Colon operator (:). The basic syntax is

inital:stepsize:final

>> m = 3:8, r = 0:0.25:1, s=1:-1

m =

3 4 5 6 7 8

r =

0 0.2500 0.5000 0.7500 1.0000

s =

Empty matrix: 1-by-0

logspace (to initialize logarithmically spaced values)

H. Yücel (METU) MATLAB Lecture I 22 / 57

Matrices

Make matrices like vectors

>> A = [5 7 9; 1 -3 -7];

Concatenation of vectors

>> r1 = [2 4];

>> r2 = [3 6];

>> M = [r1; r2];

Concatenation of vectors and matrices. Dimensions and Type must coincide!

>> r1 = [2 4];

>> m1 = [3 6; 8 12];

>> M = [r1; m1];

Getting size of the matrix

>> [r,c] = size(M); % size in each dimension

>> r = size(M,1); c = size(M,2);

>> nd = ndims(M); % number of dimensions

H. Yücel (METU) MATLAB Lecture I 23 / 57

Special Matrices

zeros(m,n) m × n matrix of zeros

ones(m,n) m × n matrix of ones

eye(n) n × n identity matrix

rand(m,n)

m × n matrix of uniformly distributed random numbers in range [0,1]

>> M = rand(2,3)

M = 0.8147 0.1270 0.6324

0.9058 0.9134 0.0975

randn(m,n)

m × n matrix of normally distributed random numbers (mean 0, std. dev. 1))

>> M = randn(2,3)

M = -0.4336 3.5784 -1.3499

0.3426 2.7694 3.0349

H. Yücel (METU) MATLAB Lecture I 24 / 57

Replicating and Concatenating Matrices

repmat

>> X = [1 2;3 4];

>> Y = repmat(X,2,3)

Y = 1 2 1 2 1 2

3 4 3 4 3 4

1 2 1 2 1 2

3 4 3 4 3 4

vertcat

>> v1 = [2 3 4]; v2 = [1 2 3];

>> X = vertcat(v1,v2)

X = 2 3 4

1 2 3

horzcat

>> v1 = [2; 3; 4]; v2 = [1; 2; 3];

>> X = horzcat(v1,v2)

X = 2 1

3 2

4 3

H. Yücel (METU) MATLAB Lecture I 25 / 57

Reshaping Matrices

Using the : operator

>> x = round(10*rand(2,4));

>> y = x(:); (The elements of x are stacked in a

column vector, column after column)

reshape()

>> x2 = reshape(y,2,4);

>> M = reshape(linspace(11,18,8),[2,2,2])

M(:,:,1) =

11 13

12 14

M(:,:,2) =

15 17

16 18

H. Yücel (METU) MATLAB Lecture I 26 / 57

Vector Indexing

MATLAB indexing starts with 1, not 0

a(n) returns nth element

The index argument can be vector. In this case, each element is looked up

individually, and returned as a vector of the same size as the index vector.

>> x = [4 6 7 -1 0];

>> a = x(2:4); --------> a=[6 7 -1];

>> b = x(1:end-2); ----> b=[4 6 7];

H. Yücel (METU) MATLAB Lecture I 27 / 57

Matrix Indexing

using subscripts (row and column)

>> A = [1:3;4:6;7:9];

>> A(1:2,:)

ans =

1 2 3

4 5 6

>> A([3 1], [2 3])

ans =

8 9

2 3

>> A([1:2],:) = [] % delete row 1 and 2

A =

7 8 9

using linear indices (as if matrix is vector)

>> [A(2), A(4), A(9)]

ans =

4 2 9

H. Yücel (METU) MATLAB Lecture I 28 / 57

Matrix Indexing

To select rows and columns of a matrix

>> c = [1 4; 0 2];

>> d = c(1,:)

d =

1 4

To get the min. (or max.) value and its index

>> a = [1 -1 0 -4, 21];

>> [minVal,minInd] = min(a)

minVal = -4 minInd = 4

To find any indices of specific values or ranges

>> ind = find(a==0);

>> ind = find(a > 0 & a < 4);

To convert between subscripts and indices, use ind2sub and sub2ind

H. Yücel (METU) MATLAB Lecture I 29 / 57

1 Introduction to MATLAB

2 Data Structures: Arrays and Matrices

3 Operators

4 Sparse Matrices

5 Scripts and Functions

H. Yücel (METU) MATLAB Lecture I 30 / 57

Operations

Arithmetic operations (+,-,*,/)

>> 7/45

>> (2+i)*4/5

Exponentiation (∧)

>> (3+2*j)^2

Complicated expressions, use parentheses

>> ((2+3)*3)^0.5

Multiplication is NOT implicit given parenthesis

>> 3(1+0.7)

??? 3(1+0.7)

|

Error: Unbalanced or unexpected parenthesis or bracket.

MATLAB has an enormous library of built-in-functions

>> sqrt(2), log(2), log(10)(0.23), cos(pi), atan(2.5)

>> exp(1903), round(1.4), floor(3.3), ceil(4.23)

H. Yücel (METU) MATLAB Lecture I 31 / 57

Transpose

The transpose operators turns a column vector into a row vector and vice

versa

The ′ gives the Hermitian-transpose, i.e., transposes and conjugates all

complex numbers

For vectors of real numbers .′ and ′ give same result

>> a = [1;5; 3i+2]

>> a’

ans =

1.0000 5.0000 2.0000 - 3.0000i

>> transpose(a)

ans =

1.0000 5.0000 2.0000 + 3.0000i

>> a.’

ans =

1.0000 5.0000 2.0000 + 3.0000i

H. Yücel (METU) MATLAB Lecture I 32 / 57

Element-Wise Functions

All functions that work on scalars also works on vectors

>> t = [1, pi, 0];

>> f = exp(t);

>> f = [exp(1) exp(pi) exp(0)];

To do element-wise operations, use the dot: .∗, ./, .∧. Both dimensions must
match (unless one is scalar)

>> u=1:2:8, v=u.^2, w=u./v

u =

1 3 5 7

v =

1 9 25 49

w =

1.0000 0.3333 0.2000 0.1429

>> A = [5 7 9; 1 -3 -7]; B = [-1 2 5; 9 0 5];

>> A.*B

ans =

-5 14 45

9 0 -35

H. Yücel (METU) MATLAB Lecture I 33 / 57

Rational and Logical Operators

Boolean values: zero is false, nonzero is true

Some of the logical operators:

Operator Meaning

<,<=, >,>= less than, less than or equal to, etc.

==, ∼= equal to, not equal to

& logical AND

| logical OR

∼ logical NOT

all all true

any any true

H. Yücel (METU) MATLAB Lecture I 34 / 57

Logical Indexing

Construct a matrix R

>> R = rand(5)

R =

0.8147 0.0975 0.1576 0.1419 0.6557

0.9058 0.2785 0.9706 0.4218 0.0357

0.1270 0.5469 0.9572 0.9157 0.8491

0.9134 0.9575 0.4854 0.7922 0.9340

0.6324 0.9649 0.8003 0.9595 0.6787

Test for some logical cases

>> R(R<0.15)’

ans =

0.1270 0.0975 0.1419 0.0357

>> isequal(R(R<0.15), R(find(R<0.15)))

ans =

1

H. Yücel (METU) MATLAB Lecture I 35 / 57

Find

find returns indices of nonzero values. It can simplify code and help avoid

loops

basic syntax: index = find(condition)

>> x = rand(1,10)

x =

Columns 1 through 5

0.4505 0.0838 0.2290 0.9133 0.1524

Columns 6 through 10

0.8258 0.5383 0.9961 0.0782 0.4427

>> inds = find(x>0.4 & x<0.7)

inds =

1 7 10

>> x(inds)

ans =

0.4505 0.5383 0.4427

H. Yücel (METU) MATLAB Lecture I 36 / 57

1 Introduction to MATLAB

2 Data Structures: Arrays and Matrices

3 Operators

4 Sparse Matrices

5 Scripts and Functions

H. Yücel (METU) MATLAB Lecture I 37 / 57

Dense Matrices

Dense matrix is a matrix in which most of its elements are nonzero.

Any classical approach to create a matrix results a dense matrix in MATLAB.

[,] creates a single row matrix

[;] creates a singe column matrix

zeros(n) returns an n × n matrix of zeros

ones(n) returns an n × n matrix of 1s

diag() creates diagonal matrix of given vector

H. Yücel (METU) MATLAB Lecture I 38 / 57

Create a 1000× 1000 matrix A

−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2

M = 1000;

A = diag(ones(M-1,1),-1) + diag(-2*ones(M,1),0) + diag(ones(M-1,1),1);

Compute how much storage this dense matrix need

s = whos(’A’);

by = s.bytes;

>> by = 8000000 bytes

H. Yücel (METU) MATLAB Lecture I 39 / 57

Sparse Matrices

A sparse matrix is a matrix which has relatively small number of nonzero

elements.

Triplet Format in MATLAB stores values and their corresponding row and

column values.

row = [1 2 3 1 5 4 1 5];

col = [1 1 2 3 3 4 5 5];

val = [2 8 9 2 4 5 7 3];

S = sparse(row,col,val);

S =

2 0 2 0 7

8 0 0 0 0

0 9 0 0 0

0 0 0 5 0

0 0 4 0 3

H. Yücel (METU) MATLAB Lecture I 40 / 57

spalloc() creates an all zero allocation for a sparse matrix.

m = 10; % number of rows

n = 10; % number of columns

nz = 21; % number of nonzero entries

S = spalloc(m,n,nz);

spones() generates a matrix of 1s with same sparsity structure as matrix S

M = spones(S);

speye() constructs a sparse identity matrix of size m × n

I = speye(m,n);

H. Yücel (METU) MATLAB Lecture I 41 / 57

spdiags() extracts or constructs sparse diagonal matrices.

Extracts nonzero diagonal entries from matrix S

B = spdiags(S);

Extracts diagonals of S specified by d

B = spdiags(S,d);

Replaces the diagonals of S specified by d with columns of B

S = spdiags(B,d,S);

Create m × n sparse matrix from the columns of B and place them along the

diagonals specified by d

S = spdiags(B,d,m,n)

H. Yücel (METU) MATLAB Lecture I 42 / 57

Create a 1000× 1000 matrix S

−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2

M = 1000;

S = spdiags([ones(M,1) -2*ones(M,1) ones(M,1)], [-1 0 1] , M, M);

Compute how much storage this dense matrix need

s = whos(’S’);

by = s.bytes;

>> by = 55976 bytes

H. Yücel (METU) MATLAB Lecture I 43 / 57

full() converts a sparse matrix to a dense matrix

A = full(S)

spy() plots sparsity structure of a matrix.

spy(S)

0 10 20 30 40 50 60 70 80 90 100

nz = 298

0

10

20

30

40

50

60

70

80

90

100

H. Yücel (METU) MATLAB Lecture I 44 / 57

Do not change sparsity structure

Indexing in a sparse structures is a expensive procedure

Accessing the row and column indexes i , j and changing previous value

S(i , j) = c is required

Accessing values is slow in sparse matrices

When an element S(i , j) is requested, a search trough row and column values

is needed

H. Yücel (METU) MATLAB Lecture I 45 / 57

1 Introduction to MATLAB

2 Data Structures: Arrays and Matrices

3 Operators

4 Sparse Matrices

5 Scripts and Functions

H. Yücel (METU) MATLAB Lecture I 46 / 57

1 Introduction to MATLAB

2 Data Structures: Arrays and Matrices

3 Operators

4 Sparse Matrices

5 Scripts and Functions

H. Yücel (METU) MATLAB Lecture I 47 / 57

M-files

Text files containing MATLAB programs can be called from

– the command line

– the M-files

Two kind of M-files:

– Scripts

– Functions

H. Yücel (METU) MATLAB Lecture I 48 / 57

A Precaution

Be careful naming files!

It’s easy to get unexpected results:

– if you give the same name to different functions

– if you give a name that is already used by MATLAB

Check new names with the command which.

It is also useful to include some error checking in your functions.

H. Yücel (METU) MATLAB Lecture I 49 / 57

M-Files: Scripts

Scripts are

– collection of commands executed in sequence

– written in the MATLAB editor

– saved as MATLAB files (.m extension)

To create an MATLAB file from command-line

>> edit helloWorld.m

To open scripts from command window

>> open helloWorld.m

H. Yücel (METU) MATLAB Lecture I 50 / 57

* Means that it's not saved

Line numbers

Comments

MATLAB file
path

Help file

Possible breakpoints

Debugging tools
Real-time
error check

COMMENT!

– Anything following a % is seen as a comment.

– The first contiguous comment becomes the script’s help file.

– Comment thoroughly to avoid wasting time later.

Note : Scripts are somewhat static, since there is no input and no explicit output.

All variables created and modified in a script exist in the workspace even after it has stopped running.

H. Yücel (METU) MATLAB Lecture I 51 / 57

M-Files: Functions

Help file

Function declaration

InputsOutputs

Functions look exactly like scripts, but for ONE difference: Functions must have a function

declaration:

function outArguments = NameOfFunAsYouLike(inArguments)

Variable scope: Any variables created within the function but not returned disappear after

the function stops running.

H. Yücel (METU) MATLAB Lecture I 52 / 57

Input

input prompt the user to input a number or string

>> input(’Enter a number:’, ’s’)

Enter a number: 5

ans = 5

If a character or string input is desired, ’s’ must be added after the prompt.

>> name = input(’Enter a name: ’)

Enter your name: Mehmet

Error using input

Undefined function or variable ’Mehmet’.

>> name = input(’Enter a name: ’,’s’)

Enter your name: Mehmet

name = Mehmet

H. Yücel (METU) MATLAB Lecture I 53 / 57

Anonymous Functions

Functions without a file

– Stored directly in function handle

– Store expression and required variables

– Zero or more arguments allowed

– Nested anonymous functions permitted

Array of functions handle not allowed; function handle may return array

>> f = @(x,y) x^2 + y^2;

>> f(1,2)

ans = 5

>> ezplot(@(x,y) x.^4 + y.^4 -1,[-1,1])

>> ezsurf(@(x,y) exp(-x.^2 -2*y.^2))

H. Yücel (METU) MATLAB Lecture I 54 / 57

Local Functions

A given MATLAB file can contain multiple functions:

The first function is the main function

– Callable from anywhere, provided it is in the search path

Other functions in file are local functions

– Only callable from main function or other local functions in same file

– Enables modularity (large number of small functions) without creating a large

number of files

– Unfavorable from code reusability standpoint

H. Yücel (METU) MATLAB Lecture I 55 / 57

Local Function Example

Contents of loc func ex.m

function main out = loc_func_ex()

main out = [’I can call the ’,loc func()];

end

function loc_out = loc_func()

loc_out = ’local function’;

end

Command-line

>> loc_func_ex()

ans =

I can call the local function

>> [’I can’’t call the ’,loc_func()]

??? Undefined function or variable ’loc_fun

H. Yücel (METU) MATLAB Lecture I 56 / 57

For More Information

http://iam.metu.edu.tr/scientific-computing

https://iam.metu.edu.tr/scientific-computing-lecture-series

https://www.facebook.com/SCiamMETU/

H. Yücel (METU) MATLAB Lecture I 57 / 57

http://iam.metu.edu.tr/scientific-computing
https://iam.metu.edu.tr/scientific-computing-lecture-series
https://www.facebook.com/SCiamMETU/?ref=bookmarks

For More Information

http://iam.metu.edu.tr/scientific-computing

https://iam.metu.edu.tr/scientific-computing-lecture-series

https://www.facebook.com/SCiamMETU/

...thank you for your attention !

H. Yücel (METU) MATLAB Lecture I 57 / 57

http://iam.metu.edu.tr/scientific-computing
https://iam.metu.edu.tr/scientific-computing-lecture-series
https://www.facebook.com/SCiamMETU/?ref=bookmarks

	Introduction to MATLAB
	Data Structures: Arrays and Matrices
	Operators
	Sparse Matrices
	Scripts and Functions

