

Course Information

Course Code	9700510
Course Section	1
Course Title	QUANTUM CRYPTOGRAPHY
Course Credit	3
Course ECTS	8.0
Course Catalog Description Prerequisites	The aim of this course is to introduce the basic of quantum information theory with an emphasis on quantum cryptography and quantum algorithms. A short review of classical information theory. Basic notions of quantum mechanics: Hilbert spaces, postulates of quantum mechanics, qubits, density operator, entanglement, EPR and Bell inequality. Quantum gates, quantum circuits. Quantum Fourier transform. Quantum algorithms: Deutsch's, Deutsch-Jozsa, Grover's and Shor's algorithms. Quantum cryptography: quantum key distribution, BB84, B92, and EPR protocols. No prerequisites
Schedule	Monday , 13:40 - 15:30, - Tuesday , 11:40 - 12:30, -
Instructor Information	
Name/Title	Prof Dr. İBRAHİM YI IRDAHAN GÜLER

Name/Title	Prof.Dr. İBRAHİM YURDAHAN GÜLER	
Office Address	Institute of Applied Mathematics, Room 204	
Email	yguler@metu.edu.tr	
Office Phone		
Office Hours	Tuesdays 9:40-10:30	

Course Objectives

The aim of this course is to intrduce the basic concepts of quantum mechanics and it's applications to quantum computation, quantum cryptograhy and quantum algorithms.

Course Learning Outcomes

1. Familiarity of students with basic concpts of quantum mechanics ,

2.Knowledge of quantum computation ,and other applications.

Instructional Methods

Classical lecture

Tentative Weekly Outline

Week	Торіс	Relevant Reading	Assignments
1	Review of quantum mechanics		
2	Review of quantum mechanics		Homework1
3	Review of quantum mechanics		
4	Review of quantum mechanics		Homework2
5	Review of quantum mechanics		
6	Review of quantum mechanics		Homework3

Week	Торіс	Relevant Reading	Assignments
7	Quantum gates		Homework4
8	Quantum circuits		Homework5
9	Quantum algorithms		
10	Quantum algorithms		Homework6
11	Quantum cryptography		
12	Quantum cryptography		Homework7
13	Quantum cryptography		Homework8
14	Quantum cryptography		

Course Textbook(s)

Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge 2000.

Benenti, Casati and Strini, Principles of Quantum Computation and Information, Vol.1. World Scientific 2004.

Assessment of Student Learning

Assessment	Dates or deadlines
Assignments: Assignments are going to be in the form of home works.	

Exams: Exams will cover the topics covered in the class.

Course Evaluation: Final examination, attendence and homework assignments

Course Grading

Deliverable	Grade Points
Final Exam	40
Homeworks	40
Attendence	20
Total	100

Course Policies

Class Attendance

Minimum % 70 attendance is required. Attendance below % 70 without excuse will cause NA letter grade.

Late Submission of Assignments

Late submissions are not accepted

Make up for Exams and Assignments

There will be no make up examinations for this class and late homework assignments will not be accepted. An exception is when there is an official medical report. In this case the contact with the instructor is expected.

Information for Students with Disabilities

Students who experience difficulties due to their disabilities and wish to obtain academic adjustments and/or auxiliary aids must contact ODTU Disability Support Office and/or course instructor and the advisor of students with disabilities at academic departments (for the list: http://engelsiz.metu.edu.tr/en/advisor-students-disabilities) as soon as possible. For detailed information, please visit the website of Disability Support Office: https://engelsiz.metu.edu.tr/en/

Academic Honesty

The METU Honour Code is as follows: "Every member of METU community adopts the following honour code as one of the core principles of academic life and strives to develop an academic environment where continuous adherence to this code is promoted. The members of the METU community are reliable, responsible and honourable people who embrace only the success and recognition they deserve, and act with integrity in their use, evaluation and presentation of facts, data and documents."