Numerical Optimisation May, 2011

Name SURNAME:

- 1. Let the unconstrained problem be minimise $f(\vec{x}) = x_1^2 + 100x_2^2$ and $\vec{x}_0 = (1, 1)^T$.
 - (a) Starting with \vec{x}_0 , apply the method of *steepest decsent* to find \vec{x}_1 .
 - (b) Starting with \vec{x}_0 , apply the *Newton* method to find \vec{x}_1 .
 - (c) For both methods in (1a) and (1b), find the values of μ_1 and μ_2 (both being positive) such that

$$\begin{aligned} f(\vec{x} + \alpha \vec{p}) &\leq f(\vec{x}) + \mu_1 \alpha \nabla f(\vec{x})^T \vec{p} \\ \vec{p}^T \nabla f(\vec{x} + \alpha \vec{p}) &\geq \mu_2 \nabla f(\vec{x})^T \vec{p} \end{aligned}$$

are satisfied, where α is the step length along the direction \vec{p} . In particular, find μ_1 and μ_2 if $\alpha = 1$ (unit step length) is acceptable in the line search.

Numerical Optimisation May, 2011

Name SURNAME:

2. Consider the linear programming in \mathbb{R}^3 ,

 $(\mathcal{LP}_3) \begin{cases} \text{minimise} & 3x_1 + 3x_2 - x_3 \\ \text{subject to} & x_1 + 2x_2 &= 6 \\ & -2x_1 - 2x_2 + x_3 &= 0 \\ & x_2 &\leq 4. \end{cases}$

- (a) Find an equivalent *reduced* programming (\mathcal{LP}_2) in \mathbb{R}^2 , by removing x_3 .
- (b) Write down the standard form (\mathcal{LP}_{st}) of the reduced problem (\mathcal{LP}_2) .
- (c) Solve (\mathcal{LP}_{st}) by using the *simplex* method using *tableaus*, and emphasise the optimal solution to the original linear programming (\mathcal{LP}_3) .
- (d) Find the dual (\mathcal{LP}_2^*) of (\mathcal{LP}_2) .
- (e) Solve the dual problem (\mathcal{LP}_2^*) and justify your answer in (2c).

Numerical Optimisation May, 2011

Name SURNAME:

3. Consider the problem

 $\begin{array}{ll} \text{minimise} & x_1+x_2 \\ \text{subject to} & -x_1^2+x_2 \geq 0 \\ & x_1 \geq 0 \end{array}$

- (a) Use a graphical representation (do not directly solve the problem) to find the *global* optimal solution. Justify your answer.
- (b) Using the *log-barrier* reformulation, solve the problem.

Numerical Optimisation May, 2011

Name SURNAME:

ID:

4. Consider the constrained problem

 $(\mathcal{P}) \begin{cases} \text{minimise} & x_1^2 + x_2^2 \\ \text{subject to} & -x_1 - x_2 + 4 \leq 0 \\ & x_1, x_2 \geq 0 \end{cases}$ (*)

and let $\vec{x}_0 = (6, 0)^T$.

- (a) Using an *active-set strategy* find and optimal solution to (\mathcal{P}) . You may use the *Newton* or the *reduced Newton* direction, whichever is applicable.
- (b) Is the solution you found a *unique* solution to (\mathcal{P}) ? Justify your answer.
- (c) Using the Lagrangian duality by relaxing the first constraint (*), find an optimal solution to (\mathcal{P}) . Does the strong duality hold?

Numerical Optimisation May, 2011

Name SURNAME:

$$(\mathcal{P}) \quad \begin{cases} \min_{\substack{x \in \mathbb{R}^n \\ \text{subject to} }} f(x) \\ \text{subject to} \quad g(x) \ge 0 \end{cases}.$$

- (a) Write down the first-order necessary optimality conditions for (\mathcal{P}) .
- (b) Consider the *trust-region* subproblem

$$(\mathcal{TR}) \quad \begin{cases} \underset{x \in \mathbb{R}^n}{\min initial matrix} & c^T x + \frac{1}{2} x^T B x \\ \text{subject to} & \|x\|_2 \leq \Delta \end{cases}.$$

for some scalar $\Delta > 0$. By noting that the constraint is equivalent to $\frac{1}{2}x^T x \leq \frac{1}{2}\Delta^2$ and using your asswer in part (5a), show that the solution x^* to this trust-region problem (\mathcal{TR}) necessarily satisfies

$$(B + \lambda^* I)x^* = -c$$

where I is the identity matrix and the scalar $\lambda^* \ge 0$. Show, in addition, that either $\lambda^* = 0$ or $||x||_2 = \Delta$.

(c) Find the solution to the trust-region subproblem (\mathcal{TR}) with data

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad c = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \Delta = \frac{5}{12}.$$

Hint: $\lambda = 2$ is a root of $\frac{1}{(1+\lambda)^2} + \frac{1}{(2+\lambda)^2} = \frac{25}{144}$.

Numerical Optimisation May, 2011

Name SURNAME:

ID:	

- 6. In the following we distinguish between *barrier* methods and *penalty* methods.
 - (a) Among these two classes (barrier and penalty), which one can be referred to as *Interior Point Methods*, which one as *Exterior Point Methods*? Give reasoning for your answer.
 - (b) Give an example for a *barrier* function, and an example for a *penalty* function.
 - (c) State, by a *pseudo-code* (or a *flow chart*), how *interior point methods* basically work.
 - (d) What kind of technical (numerical) refinements dou you know for *interior point methods*? Briefly explain.
 - (e) In what context and for what reasons do we need Merit function?