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I. A BRIEF INTRODUCTION

Problem:
Approximation of the solution X of a (scalar) sde

(1) dX(t)=a(t,X(t)) dt+o(t,X(t) dW(t), te]l0,1],
with

initial condition X (0) =zo € R
drift coefficient a:[0,1] x R - R
diffusion coefficient o :[0,1] x R - R
(driving) Brownian motion W (on (9, A, P))

In this Jecture:
Strong (pathwise) approximation of X
ie.,
Construction of a stochastic process X whose trajectories are
close (in a certain sense) to the trajectories of the solution X.

How to interpret (1) 7



Example 1. (population dynamics, finance)

dX () = p- X(1) dt+b- X(t) dW(t), X(0)=1.

Here: alt,x)=p-z, o(t,z)="0 x.
Discrete version:

O=tg<ti<...<t, =1

X(té+]) - X(té)
X (te)

=g (terr — te) + b+ (W(ter) — W(te)

Average relative increase over time interval [t t/41] is propor-
tional to length ¢5,1 — %, :

B <X (té+)]()(t_é)X (té))

=M (t£+1 - té)

Random perturbation due to, e.g., random change of environ-
ment. Modelled by independent noise terms

b (W(te1) — W(te) ~ N(0,6%- (te1 — t0))

Idealization:
max (tex1 —tg) = 0

4
Pathwise interpretation of (1) as an ode?

X is a stochastic process with differentiable paths
X(-w), w € Q, that satisfy

d d
pr X(t,w)=a(t, X (t,w)) +o(t, X(t,w)) - pr W (t,w)
t 1 ’
No! With probability 1, the paths of W are nowhere differen-
tiable on [0, 1].

Reformulation of (1) as an integral equation:

(2) x0+/0 a(s ds+/0 o(s, X (s)) dW(s)

~ /
~~

(*)

for ¢ € [0,1].

Pathwise interpretation of (%) as Riemann-Stieltjes integral?

Problem: With probability 1, the paths of W are of unbounded
variation on [0, 1].

The way out:

For suitable processes Y define

[y ave

in the mean square sense, and use formulation (2).
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The It6-integral Example 2
t
Let 0 < s <t <1 and consider a sequence of discretizations / W () dW (u) = 1/2 - (W2(t) —W2s) - (t — s))
(3) s=t" <tV < <t =y
with Proof. Consider a sequence of discretizations (3) that
‘ (n)  ,(n) satisfies (4). Then
(4) lim max (t,.,,—1t,’)=0
n—oc 0<f<n—1 n) (n)
Z W) - (W) = W)
For a NICE process Y = (Y (u))o<u<1 define . 2
: =1/2- (W (1) = W2s) = S (W) - we™)’).
(5) / Y (u) dW (u) ¢
; ] Clearly,
13 (n)y | (n)y _ (n) n n)y\ 2
= Lim : V™) (W) - w)) E( (W) -w")?) =t —s.
=0 14
(Lim.: limit in Ls($2, A, P)) Thus
(n) (m)y)2 ?
Remark 1. Formally, NICE means: E((Z (W(t€+]) - W(t )) —(t— 3)) )
i) Y is adapted (to the standard filtration associated with W n n)yy 2
()Y adapted ) — Var(S (W) - wi)?)
(ii) Y is measurable ¢
n n)y\ 4
(i) fo ) dt < oo < ZE<(W@+)1) — W(té ))) )
(iv) Y has continuous paths a.s. ¢

In this lecture: All integrands are NICE 7



7

Remark 2. The common rules of Riemann-Stieltjes integration
do not hold for the Ito-integral, see Example 2. This is a conse-
quence of the choice of the evaluation points for the process Y
in the definition (5).

Different (systematic) choices lead to different stochastic inte-
grals, e.g., the Stratonovich-integral

[ Yweawq
= i SV ) - (W) - W)

n—oc
l

—_

I
=

which obeys the classical transformation rules but lacks of other
nice properties of the Ito-integral.

Properties of the Ité-integral

(i) Linearity

(ii) For s < v <

/: Y (u) dW (u) + /:Y(u) dW (u) = /:Y(u) dW (u)

(iii) E ( [ (u) dW(u)) — 0

8

(IV) For S1 S S9 S tl S tQZ

E (/:23/@ A (1) - /tQY(u) dW(u)> 0

1 t

(v) Tto-isometry:

Furthermore, the process

¢
J = </ Y (u) dW(u))
0 0<t<1
satisfies:

(vi) J is adapted.
(vil) J is a martingale:
B(TO|W @),u < s) = I
(viii) J has a continuous modification 7, i.e.,

J has continuous paths and V¢ : J(¢) = J(t) as.



Ito’s formula

Theorem 1. For f € C'2([0,1] x R) and t € [0,1]:

F(LW(H) = £(0,0) + /f“sWUMWU

e

+1/2 / FO2(s, W (s)) ds
0
Corollary 1. For g € C'([0,1]) and t € [0, 1]:
t t
[ o) awis) = gt) Wi - [ o) Wis) ds
0 0
Proof. Use 1t6’s formula with f(¢,2) = g(t) -

Example 3.
Solving the sde from Example 1

AX(t) = p- X(¢) dt+b- X (1) dW(t), X(0)=1.

Consider

flt,z) =exp((p—b*/2) - t+b-z).

10

Geometric Brownian motion:

X(t) = ft,W(t) =exp((n—b*/2) -t +b- W())

Note that
f(l’o) _ ('u _ b2/2) -, f(O;l) =b-f, f(0,2) —p2. 1.

Thus, by 1té’s formula,

X@zIQ£L+AbaX@dW@)

=1

—I—/O(;L—b/Q)-X(s)ds—l—l/Q-/O b* - X(s) ds
=1—|—/0;L-X(s)ds—|—/b-X(s)dW(s).

0

Existence and unigueness of a solution of (1)

Regularity conditions for a function f: [0,1] x R —» R :
(Ly) 3K >0Vz,ye RVte[0,1]:

[f(t2) = f(ty)l < K- |o -y

(LGy) JK >0VzeRVte[0,1]:
f(t,2)] < K- (1+|z])
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(LLGy) 3K >0VzeRVs,tel0,1]:
(s, 2) = f(t,2)| < K- (1+z]) - |s — ]

Note: (Ly) A (LLGy) = (LGy) A fis continuous

Theorem 2. Assume that f =a and f = o (are continuous
and) satisfy (Ly) as well as (LGy).

Then there exists a continuous adapted process X that satis-
fies (2). Moreover, if the process X has the same properties
then

P(Vt: X(t)=X(t) =1.

Idea of proof of existence:

Consider the Picard-Lindelof-iteration

X(U) = 2y,

t
XM (t) = 2o+ / a(s, X" (s)) ds
0

+/0 J(S,X("_l)(s)) dW (s).

With probability 1 the paths X (-, w) converge uniformly on
[0, 1]. The limiting process is adapted and satisfies (2).

12

Properties of the sclution

Under the assumptions of Theorem 2:

(i) The trajectories of X up to time ¢ are essentially deter-
mined by the corresponding trajectories of W up to time
t,ie.,

(X (5))o<s<t = g((W(S))ogsgt) a.s.
for some measurable function g : C([0,¢]) — C([0,1]).

(if) X is Holder continuous of order 1/2 in p-th mean sense,
ie.,

Vp € [1,00[ dc > 0 Vs, t € [0,1] :

(6) (E1X(s) = X(B)P)" < e |s — ]2

(iil) X is a Markov-process. For s < ¢:
PXOIX()ocucs — pXB)X(5)
Moreover, for PX() almost all z € R:
pXOX($)=r — pXaalt)
where X , is the solution of
dXs.(t) =a(t, Xs,) dt + o(t, Xs,) dW(t), te€]s, 1],

with initial value X ,(s) = =.
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(iv) X is a diffusion process. In particular,
E(X({t+6)— X)X (@) =z)=alt,z) d+ 0(d)
and

(1) E((X(t+68) = X(1)*|X(t) = 2) = 0(t, ) - 6 + o[6).

Property (7) is crucial for the analysis of Ly-approximation, see
Part III. The smoothness of X in mean square sense is locally in
time and space determined by:

conditional Hélder constant |o(t, X (t))].

Example 4. For the trivial equation
dX(t)=dw(t), X(0)=0,

we have

o(t,X(t)=1.
For the linear equation

dX(t)=p-X(#)dt+b- X(t) dW(t), X(0)=1.
we have
o(t,X(t)=b-X(t) =b-exp((u—b*/2) -t +b- W(t)),

see Example 3.
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The problem of strong approximation

Given data about a, 0 and W construct a stochastic process X
that is pathwise close to the solution X of (1).

Available data:

(i) evaluation of a, o and/or partial derivatives of these func-
tions at suitably chosen points in [0, 1] X R, e.g.,
a(t,z), o(t,z), a®V(t, z), c®O(t, z).
In practice: by subroutines
(ii) evaluation of suitably chosen functionals of W; in particular
(a) Dirac-functionals: W (t),
(b) Continuous linear functionals: fst W (u) du,
(c) Tterated Tto-integrals: 7 W (u) dW (u).
In practice: (a), (b) by random number generator;

(c) is a problem.

Discrete approximation:

X pathwise close to X at finitely many points in [0, 1],
e.g., at t =1 with

error pathwise: | X(1) — )/(\'(1)
average:  (E|X(1) — )?(1)|‘1)1/q, q € 1,00l
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Global approximation:

X pathwise close to X globally on [0, 1] with

error pathwise:

1 - l/P
S | X (t) — X(t)]P dt , € [1,00]
1x - 2= 4 6 ' di)
SuPyepo,1 X (8) — X(¢)] y b= 00.

average: (E||X — )/(\'||g)]/q, q € [1,00].

Remark 3. Closely related problems:

e Reconstruction of a stochastic process X
e Estimation of a weighted integral of X

based on data about X itself. See Ritter (2000), Remark 10 in
Part IIT and Remark 14 in Part IV.

Note: For approximation of the solution X of (1) only data about
the driving Brownian motion W is available.

II. CLASSICAL METHODS AND RESULTS

Classical methods are based on a fixed discretization

O=t<th <...<t, =1.

Recursive one-step construction of a scheme

zo= X (to), X (t1), ..., X (tn).

Discrete approximation at ¢ = 1: X (1).

Global approximation by (piecewise linear) interpolation.

The Euler scheme (Maruyama 1955)

Linearization of integrals:

X(ter)
(728

— X(t) + /t X () di+ /t o(t, X (1) dW (1)

(*) (%)

(*) approx a(te, X () - (ter1 — o),
(x*) approx oty X(te)) - (W(ten) — W(ts).



Scheme:
)?E(to) = X,
XP(trar) = XP(t0) + alte, X(t) - (tear — t0)
+a(te, XU (k) - (W ten) — W ().

Example 5.
Trivial equation:
dX(t)=dW(t), X(0)=0
X=W
XE(t) =W (t)
Geometric Brownian motion:

dX(t)=p- X( ) dt +b X( ) dW(t), X(0) =1
(

XB(te4n) = XP(te) + - XE(te) - (bran — 1)
b XE(t) - (W(teyn) — W(L)))

and

XPte) = [T+ m- (ta = t5) +b- (W(tja) = W)

J=0
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Amax = max ; (t€+] - té)

¢ unspecified positive constants that only depend on
error parameters p, ¢, on initial value zg, and on
constants from regularity conditions on @ and o

Theorem 3. Assume (Ly) and (LLGy) for f =a and f = 0.
(i) (Maruyama 1955)
max (E'|X(te) — )/(\'E(tmq)l/q <c- A2

max

(ii) For the piecewise linear interpolated Euler scheme

AI]r{aQX if p< oo

E||X - X9 <
PIX=AEE <03 M (nagt )™ o= oc

max

(Fauré 1992)

Proof of the first inequality in Theorem 3(ii). Define

t -1 t—1
041 X (1) + ‘
toy1 — 1y Loy — by

By property (6) and part (i) of Theorem 3

Xlz’n(t) — . X(tg_H), t e [té+]; té]'

(E\HX_XZWLH )1/‘1 <c- A]/Q

max)

(B|| X" — KB < e max (E|X (t) - XE(t)]0)/?

<ec- AUQ

max*

g
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The Milstein scheme (Milstein 1974)

Motivation: Assumptions in Theorem 3 on a and o imply

E (/tm a(s, X (s)) ds — a(te, X (t0)) + (teg1 — t£)>2

174
c- (tip — t£)3
but only

E (/ - o(s, X (s)) dW (s) — o(te, X (t0)) - (W (te1) — W (t0))

7]
¢ (o — t£)2

A better approximation of the Ité-integral is needed.

Idea:  Use first order Taylor-expansion of o (¢, ) and ignore
O((te41 — t¢)®)-terms (in mean square sense).

Under sufficient regularity of a and o for ¢ € [ty ts41]
o(t, X (1))
= o (te, X (1) + 0V (t, X (1)) - (X(8) — X (t)
+O((te — te))

" ot X(00) + 0t X 0) - [ oo, X(6)) aw (s

+O((te1 — t0)?)
= (b, X (t) + (00D - 0) (te, X (80)) - (W () = W(ts))
+O((tesr — )%,

:

20

which yields

K%}@X@MW@
oty X(t) - (W (te) — W (ty))
+@WW@@X@»-f%W@—W@»MWﬂ

+ O ((terr — t0)?).

Recall from Example 2:

fﬂww—wwnmw)
= 1/2- (W (ter1) = W(t)* = (ten — 1))
Scheme:
)?M (to) = .’130,
XM(ten) = XM (t0) + alte, XM (1)) - (ter — 1)
+o(te, XM(te) - (W(tea) — W(t))

+Uz@:%@@XWm)
X (W (ter) = W(t))* = (tee = t0)-
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Example 6. Geometric Brownian motion
dX(t)=p-X(@)dt+b- X(t)dW(t), X(0)=1
X(t)=exp((p—b*/2) - t+b-W(2))
Here: 0(®1) = b

Hence

XM (tpa) = XM () + - XM (k) - (besn — 1)
b XM(tg) - (W (tegn) — W (k)
+6%/2- XM (t)
X (W (terr) = W(te)” = (terr — o))
and

-1
X =TI+ =872 (131 = 1)

+b- (W(tj) — W(ty))
+ 022 (W (tj) — W(t_i))2)'

Theorem 4. Assume (L), (LLGy) and (L;on) for [ = a
and f =o0.

(i) (Milstein 1974)

max (B|X(t) = SY(#)]")" < ¢ A

22

(ii) For the piecewise linear interpolated Milstein scheme

(E||X — XM|[2)"

Al if p < oo
<c-
AYZ (A ) ifp =

Proof of Theorem 4(ii). The first inequality is straightforward
from property (6) and part (i); c.f. the proof of the first inequality
in Theorem 3(ii). The second inequality follows from Theorem 3
and Theorem 4(i) since

S 1 SEg ]
(BIIX - R1%)" < (BIIX - X2|1%)"

+ max (E|X"(ty) — X(te)|q)l/q
+ max (E|X (t) - XMy o

See 77 for a proof of Theorem 4(i).

Can we do better?

Discrete:  NO if only point evaluations of W are used
see Part IV
YES if continuous linear functionals of W or
iterated Ito-integrals are used, see next section
Global:  NO see Part III and Part V



It6-Taylor schemes (Kloeden and Platen 1995)

[terated Ito-integrals:
Notation  dgt := dt, dit .= dW (t)
Let M= J{o,1}

reN

For a = (aq,...,a,) € Mand 0 < s <t <1 define

/ / / 1da1tl ar 1 "" ]dart

Example 7.
t
I(O),s,t = / ldu=t—s
ot
Iy = / LdW(u) =W (t) — W(s)

1 13
Ty = / Iy s du = / (W (u) — W(s))du

(continuous linear functional)

Toana= [ ([ v -wie an) aw

( nonlinear functional)

Note: In general, iterated Ito-integrals are not Gaussian.

23
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[t6-Taylor scheme of order vy € N/2:

X(to) =
X(tea) = X0(t) + Y Fa(te, X0(t0) Lty

aeA7
with certain hierarchical sets of multiindices A, C M
and certain coefficient functions
fo:[0,]]xR—=R
composed of a, o (and partial derivatives).

(Background: Truncated It6-Taylor expansion of solution X)

Coefficient functions:
Consider the differential operators

2
L’ = %—l—a 634—02/2 & L'=0- -
T

For a = (a1, ...,a,) € M define

a if @ = (0)
Ja=1qo0 if a = (1)
LY f(ag.....ap) Otherwise

Example 8.

f(o’l) = 0-(10) +a - 0-(01) + 0_2/2 . 0_((]2)

faog=0" ", fany=o0- e



Hierarchical sets:
a,) € M put

((a) =Hj: oy =0}

For a = (ay,. . .,

lal] =7 +((a)

For v € N/2 define

Ay ={aeM: lal| <2y or[lof| = 2((a) = 27 + 1}

Note: y1 <y = A, CA,

Example 9.

Y= 1/21 A1/2 = {(0), (1)}
foy=a, fo)=

Euler scheme

v=1 A ={0),(1),(1,1)}
foy=a, foy=o0, fay=0-0

Milstein scheme

(0,1)

v =3/2:
yields the

A3/2 = {(O)a (1)a (Oa O)a (Oa 1)’ (L O)’ (L 1)a (1’ 1 1)}

25 26

Wagner-Platen scheme (Wagner and Platen 1978)
X*2(tg) = ao,
X3P (t41)
= X (t0) + alte, X*(20)) - (101 — 1)

oty X2P(t)) - (W (te) — W(ty))
+1/2- (0(0,1) '0')(155,)?3/ (t)
X (W (te) — W(te)* — (texr — tr))

+ (019 a- o@D — /2 (0D (2,, X3 (t,))
x (W (te) — W(U)) (b1 — )
F1/6- (o 0¥ 407 00) (1, R
X (W(teﬂ) - W(té))
(a(laﬂ) +a-a%) 4 02/2 : 0(0’2))(% XW(tf))
X (tey1 — té)2
+ (- a®) — (10
— a0 — 62/2. 60D) (1, X3 (1))

y 41 (W(s) B

7]

+1/2-

W(té)) ds

Note:  The Wagner-Platen scheme uses point evaluations

and continuous linear functionals of W.
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For v € N/2 put
B,={(ay,...,o,) e M\ A, : (as,...,0,) € A}

Theorem 5. Assume (Ly,) and (LLGy,) for alla € A,UB,,.
(i) (Kloeden and Platen 1995)
max (X (t) — X(t)]") " < - 4

max
(ii) For the piecewise linear interpolated scheme X7
% 1/
(E1X = X"][7)
Al if p < oo
<e-

A (in AI;;X)I/Z if p=o00
Remark 4. Part (ii) of Theorem 5 is shown in the same manner
as Theorem 4(ii).

Note again: In general, the simulation of iterated It6-integrals
is an unsolved problem. See, e.g., Gaines and Lyons
(1994), and Rydén and Wiktorsson (2001) for that
problem.

Remark 5. Meanwhile there exists a multitude of schemes in-
cluding, e.g., Runge-Kutta methods and multistep methods. See
Kloeden and Platen (1995).
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II. OPTIMAL L3-APPROXIMATION BASED ON POINT
EVALUATIONS OF W

Motivation:
Consider a classical strong approximation X based on a dis-
cretization 0 = ¢3 < ... < t, = 1. Typical result:

1/2 < A2

max

(ElIX = X[3)
(e.g., Theorems 3, 4 and 5 for p = ¢ = 2 in Part I

Shortcomings of this kind of result are
(i) Computational cost of X is not taken into account, e.g.,

(a) number of calls to random number generator
(b) number of evaluations of a, o, a®") etc.

(c) number of arithmetic operations to compute X

A more useful result would be of the type

(E||X — )A(H%)]/Q <ec- (cos‘c()?))_]/2

A~

with an appropriate definition of cost(X), e.g.,

Thus: |Relate the error to the cost]
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(ii) The result gives only an upper bound with an unspecified
constant. Different methods or different discretizations can
not be compared.

Thus: ‘Lower bounds and explicit constants‘

Questions:
e Optimal method?
e Adaptive discretization?
e Complexity?
Given € > 0 what is the minimal cost to spend in order to
achieve an error of at most €7
or, equivalently,

Given a (cost)-budget N what is the minimal error that
can be achieved using methods with cost at most N7

For a systematic treatment of these questions we need to specify
e class of methods
e error criterion

e cost measure

Approach in the framework of information based complezity,
see Traub, Wasilkowski and Wozniakowski 1988)

30

Class of methods

X: All (up to measurability) approximations X that are
are based on a finite number of evaluations of W
at points
Ty .oy Ty € [0,1]

where the choice of 7441 may depend in any (measurable) way
on the previously computed values W (r), ..., W(r)
(in particular 74 < 7441 is not required).

and the total number v of evaluations may be determined
by a (measurable) stopping rule.

(See below for a formal definition of X)

Error
e(%) = (BI|IX - X|3)"
= (E /0 (X(t) - )?(t))th)
Cost
o(X) = E(v)

= average number of calls

to random number generator
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Minimal errors

e]\,vzinf{e()?): XeX, oX) < N}, N>0

The quantity ey is the minimal Ls-error that can be achieved
with methods in the class X that use at most /V point evaluations
of W on the average.

Mathematical goals:

(i) Exact rate of convergence of ey, i.e., order and asymptotic
constant (answers complexity question in asymptotic sense)

(ii) Easy to implement method X, that achieves this rate, i.e.,

lim e(Xn)

n—oc Eo
€e(Xn)

=1

((strong) asymptotic optimality)

Remark 6. The class X is specified by the type of informa-
tion about W. Here only Dirac functionals are admitted. In par-
ticular, X contains (piecewise) interpolated Euler and Milstein
schemes but not interpolated Ito-Taylor schemes of order v > 1.
See Part V for results concerning continuous linear functionals
or iterated Ito-integrals.
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Why should the points 7y, ..., 7, be chosen sequentially?

Example 10. (Geometric Brownian motion)
dX(t) = X(t) dW(t), X(0)=1
X(t) = exp(—t/2 + W(t))

Three trajectories of W and X:

0
0 1 0 1
1+ : 3r ]
0 . 2r T
r | 1A\M
0
0 1 0 1

Discretization should be adapted to trajectories of solution
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Recall from Part I: The fully adaptive method X

Under appropriate conditions on a and o

E((X(t + 5) — X(t))Q‘X(t) = x) = 02(15, x) -0+ 0(5) Start: 70 =0, X:L(TO) = Zo

Oszillation of trajectories of X is (in mean square sense) locally £-th step:
in time and space determined by: e known data
conditional Hélder constant |o(t, X (t))| Ty, mp = Xo(my), j=0,...,4—1
e cstimate the conditional Holder constant at 7,1 by
In the preceding example: lo(t, X (t)| = X(t)
(c.f. Example 4) [o(7e-1, Ze-1)]
and compute candidate for next discretization point
1
Basic idea:  The larger the value of |o(t, X (t))| =Tt 0 (Tr-1, T01)]

the finer the discretization around t. o If 7, < 1 then do Milstein step

Problems: Xo(10) = 21 + a(T—1, 24-1)) - (70 — To—1)

(i) Quantification of larger and finer Folr,2ea)) - (Wire) = Wira))
(ii) We can not observe the value of |o(¢, X (¢))| in general +1/2- (0 0%V (121, 20-1)
x (W(re)) = W(re—1))® — (70 — 70-1))
and proceed with (£ + 1)-th step.

Else set 74 = 1, calculate )?;‘;(1) as above and stop

End: Piecewise linear interpolation
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Number of evaluations of W pathwise

vy =min{{ e N: 7, =1}

1
approx n/ lo(t, X (1))| dt
0

The harder the trajectory the more points are used

Simulation experiment:

dX (t) = 3X(t) dW (1)
n = 5000

10000 trajectories wn, . .., wiggee of W

Average number of evaluations

104
1
1—04 Z 1/50(](](21)2') = 14981
i=1

Relative frequencies of vxgq:

0.20

0.10

le+03 le+04 le+05 le+06
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Unfortunately, it’s hard to analyze 5(:;:

The simplified adaptive method X,

Idea: Do not update the step-size in every step

Algorithm:

1) Dependent on n determine coarse equidistant
prediscretization

ty="~0/ky,, £=0,1,...,k,
Long Milstein-steps
Xalte) = XM (1)

2) Determine number of additional equidistant points in subin-
tervals Jtg, tgy1[ by

pe = [n/kn o (te, XM (t0))]]
Resulting points
T =te+ i (kn-(ue+ 1)) §=0,1,...,

Short Euler-steps with “frozen” values of drift and diffusion
coefficient

AN A~

Xo(715) = Xn(reo1) + alte, XM (8)) - (105 — 72,j-1)
+o(te, XM (1) - (W(re;) — W (1))

3) Piecewise linear interpolation
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Adjusting the number k,, of coarse grid points

k, should be small compared to the total number ), y¢ of adap-
tive points in order to keep track of the local smoothness of the
solution:

lim k,/n=0

n—oc
k, should be large enough to guarantee sufficiently good esti-
mates of the values of the drift and diffusion coeflicients:

. 9 i
lim k;/n =00
n—oc

Assumptions throughout the rest of Part I11:
(Lf)a (LLGf)a (Lf(O,])) for f=aand f=0

Put

1 1
Czﬁ-E/O ot X(1)| di

Theorem 6. (Hofmann, M-G, Ritter 2001)

0 Jim (e(Xn) - e(Xa) = ©
) lim 07 (%) =6 - C.
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A first comparison:

)?é” : Piecewise linear interpolated Milstein scheme with
equidistant discretization 0,1/n,2/n,...,1

Note: c()/(\'%) =n

Put
1/2

Ceant _ % - (E /0 o2t X (1) dt>

Theorem 7. (Hofmann, M-G, Ritter 2001)
lim n'/?. e()?%) — ¢

n—oo

Example 11. Geometric Brownian motion
dX(t)=0b-X(t)dW(t), X(0)=1
Here

: 1
o = = (e = 1), O = oy

1
V6
The class X

An approximation X € X is determined by 3 sequences of mea-
surable mappings

Y = (V)kens X = (Xa)keN, © = (Pk)keN,
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with
Y RE—[0,1] (determines 77),
xe: RA4T 5 {STOP,GO}  (determines stopping),
0 : R — Ly([0,1)) (determines approximation).

First evaluation point: 71 = 1)1 (x)
{-th step: known data
Dy = (g, W(r1),...,W(m))
if x¢(Dy) = GO then evaluate W at

Te+1 = ¢£+1(Dé)
if x¢(D¢) = STOP then use approximation

@u(Dy)

Total number of evaluations:
Vixe) = min{l € N1 x4(D,) = STOP}
Put
S={(®,x:9) 1 P(Wyyp) < 00) =1}
For (¢, x, ¢) € S define
Xip) = Py (Pty)

andlet
X = {X(w,x,w) : (Zp’Xa 90) € S}

40
Note:

e X contains every implementable method;
in particular all methods based on evaluation of W at a
fixed discretization

0=ty <...<t,=1.
In this case
v=t, L=1,...,n,
GO fi<n-—1
Xe= {STOP if£=n

o X contains the adaptive methods X, and )?;‘;

e X even contains methods, which may not be
implementable, e.g., conditional expectations

X =EX |W(n),..., W)
e No restrictions on information about a and o.
Recall minimal errors ey = inf{e()/(:) - Xe X, c()/(:) < N}

Theorem 8. (Hofmann, M-G, Ritter 2001)
lim N'/2. ey =C

N—oo
Corollary 2. If C' > 0 then )/(\'n 15 asymptotically optimal.

Remark 7.
C=0& PMel0,1]: ot,X(t)=0)=1

& equation (1) is deterministic



41

Can we be as good with

e a fixed number of discretization points?
e a fixed discretization?

e an equidistant discretization?

Interesting subclasses of X

Corresponding to the above questions we consider

xfixed v _ {X W) € X T Viyio) constant}
Xfived — {X(w;x;e@) € X4+ 4y constant for £ < vy ) }
ui g xed | ‘ /
X = { Ry € X5 2y = 60 Tor £< v}

with respective minimal errors
efixed v = inf{e( )? X e Xfxed v, c()?) < N}
elixed = inf{e( )/(: X e xfixed, c()/(:) < N}
e?{,]m inf{e( (X): X ex™ o(X) < N}

Note: (Piecewise linear) interpolated Euler schemes and
Milstein schemes belong to the class Xfxed,
The (piecewise linear) interpolated equidistant Milstein
schemes )?,11” belong to the class X,
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Put

civedv _ L ( (/ ot X (1) |dt)>

cﬁxed_%./ (Bt x( ))))”2 it

0

and recall the constant

Ceani _ % - (E /0 o2t X(0) dt)

Theorem 9. (Hofmann, M-G, Ritter 2001)
. d v zed v
lim N'/2. ejffe = (fived

N—oc
lim N'/?. el = cfied
N—oo
lim N2 eequZ Ceavi
N—oxo

Recall the asymptotic constant for ey:

1 1
C-—-8 /0 oL, X (1))] dt

Note that
C < Cﬁxed Vo« Cﬁxed < Cequi

with strict inequality in most cases, see Remark 9.

1/2

/2



Example 12. Geometric Brownian motion

dX(t) =b- X(t)dW(t), X(0)=1
Here
Cequi _ \}6 . (exp(bQ) . 1)1/2
1 2
Cﬁxed: -—-eXprQ_l
V6 |b] ((t'/2) = 1)
1 1 1/2
Cﬁxedy: L. 2-6Xpb2 -1
V6 b ( ) )
1
=M

Exponential dependence on b except for the constant C'.

Remark 8. (Interpretation of asymptotic constants)

Recall:  conditional Holder constant |o (¢, X (¢))| describes

smoothness of X locally in time and space.

Constants C' and Cf*¢d? are based on average

1
H— / ot X (1)) dt
0
of the conditional Holder constant along a trajectory:

C=1/v6-E(H), ™" =1/\6.(E(H)"
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Due to (7)
(8)  E(X(t+0)—X®)*= Elo(t, X(t))]* 5+ o(6)
Thus

a(t) = (Elo(t, X ()]°)"*

describes smoothness of X only locally in time.

Constants Cf*ed and € are based on a:

b ([0

Remark 9. (Equality of asymptotic constants)

1/2
Cﬁxed _ L

1
| a®)dt, CM=
v 0

In general

Cequi — Cﬁxed

iff « is constant

Cﬁxed — Cﬁxed v

iff Ftg€0,1], v € C([0,1)) :

P(vt € [0,1]: lo(t, X ()| =~(t) - |o(to, X (t0))]) =1
Cﬁxed vo— (O

ifft P(Vtel0,1]: |o(t, X)) =at)) =1

For equations with additive noise, i.e., 0% = 0: C = Cfixed

Furthermore
C = Cﬁxed vo_ Cﬁxed — Cequi =0 iff C=0

iff eq (1) is deterministic



Remark 10. (Ls-approximation and Lo-reconstruction)

Consider weighted Brownian motion
Y(t) = p(t) - W(t), tel0,1],
with continuous p : [0, 1] — [0, co].
Best Lo-approximation of Y based on Y (¢1),...,Y (tn):
Virom® = BV | V(1) Y (tx))
Resulting minimal mean square Lo-error:
ex = inf{(E|lY =Y, D2 0<ti <... <ty <1}

Note: Adaption does not help here since Y is Gaussian

From general results on Ls-reconstruction (see Ritter 2000):

]\/ll_r>noo N]/2 . ’é’N = p = \/_ /
Taking the weight p = a yields
Cﬁxed — Ca
Taking the random weight p = |o(-, X(-))| we get
C = E(Ciot.x())

Heuristics:
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e Locally in time, the solution X behaves like a Brownian

motion weighted with a, see (8).
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e Locally in time and space, the solution X behaves like a
Brownian motion randomly weighted with |o(-, X (+))],
see (7).

° Approximation of X at discrete points is cheap compared
to Le-approximation of X, see Theorems 4 and 7.

Remark 1. (Asymptotically optimal methods)

The adaptive method )/(\'n
(Corollary 2)

For the class X:

For the class X™ed ».  Same definition as )/(\'n with
numbers py (essentially) replaced by

kn—1

M={ No(te, XM (1) <Z|0t XMt |)_1W

For the class Xfixed: Piecewise linear interpolation of
Milstein scheme with regular

discretization

For the class Xedu: Piecewise linear interpolation of
the equidistant Milstein scheme XM

(Theorems 6 and 8)
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Simulation experiments

Equation

dX(t) = 3- X(8)dW(t), X(0)=1.

Comparison of fully adaptive method )A(;l" with simplified adap-
tive method X,,:
e Error and cost of X; by simulation

e Error and cost of )A(n by asymptotic formulas from
Theorem 6:

c()/(\'n) ~ 3n,

e()/(\'n) ~1/v2n

n Error Cost

Simul. Asymp. Simul. Asymp.

2-10°| 1.82-102 1.58 - 1072 6009 6000
25-10°] 1.59-102 1.41-1072 7624 7500
5-10°] 1.04-1072 1.00- 1072 14981 15000
1-10*| 7.09-1073 7.07-1073 29843 30000
1/6-10°| 5551073 5.48 - 1073 51297 50000
1/3-10°| 3.81-1073 3.87-1073 100122 100000

Conjecture: The fully adaptive method )?;
is also asymptotically optimal in the class X
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Dependence of cost on error within range [1073,2 - 1072]:

e Solid or dotted lines by asymptotic formulas from
Theorems 6, 7 and 9.

e % from simulated values in previous table
e + and (O from explicit formulas
for c()/(\'n) and e()/(\'n) as well as e()A(flV[)

Te+10 +— : - —

Complexity

Fully Adaptive —T—
Simplified Adaptive
1e+09 Adaptive with fixed v -+ --
Equidistant ©
Equidistant
1e+08 —
1e+07
+
1e-+06 7N
_|_
T +
100000 - + n
+
10000
1000 T T T T T ———
0.001 0.01

Using the fully or simplified adaptive method the computation
time (in terms of the average number of calls to random number
generator) decreases by a factor close to

(C/C*™)? = 9/(exp(9) — 1) = 0.0011108...
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IV. OPTIMAL APPROXIMATION AT A SINGLE POINT
BASED ON POINT EVALUATIONS OF W

Classes of methods as in Part 111 i.e.,

X:  All approximations X that are based on a finite
(random) number v of point evaluations of W

Xfixed v All approximations X € X with deterministic v

Xfixed: A1 approximations X € X% ¥ with fixed
discretization

Xeaui; Al approximations X € XB*d with equidistant
discretization

Cost measure as in Part II1, i.e.,

¢(X) = E(v) = average number of evaluations of W

50

Minimal errors

ey = inf{e(X): X €X, ¢(X) < N}

Canonical definition of minimal errors ~ efixed v efixed = o™

) eN

b

Assumption throughout the rest of Part IV:

a9 o) 20,12, 7=0,1,23,

exist and are continuous and bounded.

Example 13. (Geometric Brownian motion)
dX(t)=p-Xt)dt+b- X(t)dW(t), X(0)=1
Here

X(1)=exp((p—0*/2) +b-W(1), ex=e1=0

Example 14. (Additive noise)
dX(t) =a(t)dt+o(t)dW(t), X(0)=0,

1 1
X(1) = / a(t)dt +o(1)- W(1) — / a'(t) - W(t)dt
0 0
Essentially, approximation of

/ L) W) de
0
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Example 15. (Langevin equation)

dX(t)=a- - X@t)dt+dW(t), X(0)=1
Here

X(1) =W(1)+ /01 a- U0 W () dt

Essentially, approximation of

1
/ oD LW () di
0

Thus:  Mean square approximation of X at a single point
is strongly connected to approximation of the integral
of a weighted Brownian motion

The weighting process

Define
Ot) =n(t, X(t) - (), tel0,1],
where
5= a0l _ 510 _ 501 _ 1/2. 2502)
and

B(t) = exp ( /t (a®Y =172 (0")?) (u, X (w)) du
+ /t o (u, X (u)) dW(u))
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Motivation for #:

General results on approximation of the integral of a weighted
Brownian motion suggest (for nonzero weight)

(*) ey <1 / N s
see Ritter 2000. (Upper bound is a consequence of Theorem 4)
For the Wagner-Platen scheme )/(\',3\,/ ? with N equidistant dis-

cretization points

(BIX(1) - X))

S C/N3/2,

see Theorem 5.

Note that )/(\'i,/ 2 ¢ X since this method uses integrals of the
Brownian motion, see Part II.

If () is true then approximation of X (1) is equivalent to ap-
- 53/2
proximation of X/ (1).

The function 7 is composed from the coefficient function asso-
ciated with the Brownian integrals used by the Wagner-Platen
scheme

n= f(l,o) - f(O,])
o1
I(],O),tg,tg+1 = / (W(t) - W(tﬁ)) dt
2
Loy tptey = (e = te) - (W (tern) — W(te))

_ /t W) — W) de

l

All other Tto-integrals are functions of point evaluations of W
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Interpretation of the process &:

Roughly, ®(t) is the mean square derivative of the solution at
the final time point X (1) with respect to its state at time ¢.

For z € R and ¢ € [0, 1] consider the equation
dXi.(s) = a(s, Xi,(s)) ds+o(s, Xix(s)) dW(s), t<s<1,
with initial value X, ,(t) = .

Note that
PEia(s)ics<t — pX(9)i<s<t | X (H)=2

For every s € [t,1] there exists the mean square derivative
X (s) of X;.(s) with respect to the initial value z, i.e.,

lim B(1/h- (Xiaa(s) = Xia(s)) - X, ,(s))* =0.

The derivative process is explicitly given by

X} () = exp < /t S(awal) —1/2- (0O?) (u, Xy 5(u)) du
+ /t s oV (u, X, ,(u)) dW(u)) .

Taking s = 1 and replacing X}, by the solution X in the right
hand side above yields the definition of ®(t).

54

Analysis of minimal errors

Define the constants

C=_—_.

(=],
)
(/

Cﬁxed — .

12
' 1 1 , 1/2
cMM = —. /E@t dt>

Theorem 10. (M-G 2004)

lim N-exy=C
N—oc
lim N - ﬁ sed v (fised v
N—oco
lim N - ﬁ ved _ ¢ fised
N—oo
]th N - ei‘fm C e
—00

Note: Constants are alltogether either zero or positve

In the latter case the order of convergence is 1/N
for all classes, however

C < Cﬁxed v < Cﬁxed < Cequi

with strict inequality in most cases, see Remark 13



Example 16. (Additive noise)
dX(t) =a(t)dt+o(t)dW(t), X(0)=0,
Here
n=-o, o) =1
Thus deterministic weighting process

O=n=—-0

~

yields

C = Cﬁxed v Cﬁxed \/__ / | o
coi = —— ([ 1ot |2dt
()

similar to mean square Lo-approximation

Example 17. (Linear equation)
dX(t) = at)- X(t)dt+ B(t) - X (t)dW(t), X(0)=1,

Solution

X(t) = exp (/Ot(a Z1/2- B (u) du + /Utﬁ(u) dW(u))

Here

and
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Weighting process

yields constants
1
C _ - / N} o _ 1 6 . 2
AL xp(|lafls —1/6 - [|B]15)

xea v Xe 1
CP1* = O = B exp(lal +1/2- 18]5)
equi 1
O = = 18l - exp(llaf +1/2- 1811)

For instance, if @« = 0 and B(t) = b - t then

C = |b]/V12 - exp(—b*/18)
Cﬁxed v _ Cﬁxed — Cequi — |b|/\/ﬁ . exp(bQ/G)

C is exponentially decreasing in b while the other constants are

exponentially increasing in b.

Adapting the number v of evaluations of W' to the trajectory of

the solution X is essential here.

Remark 12.

Theorem 10 determines rate of convergence of minimal errors

only for nonzero constants.
Cleaﬂy: C = Cﬁxed v _ Cﬁxed — (e — iff

(9) P(VEe 0,1]: n(t, X(t)) =0) =1



Conjecture:

(9) iff I measurable f:[0,1]] xR > R:
PVte [0,1]: X(t) = ft,W(t) =1
If the conjecture is true then
ey <X1/N or ey=e =0.

The conjecture is known to be true in many cases:

o inf,, |o(t,z)| >0

(Clark and Cameron 1980)
e o and o have parial derivatives of any order

(Yamoto 1979)
e For the linear equation from Example 17

((9) implies 8’ = 0)
Remark 13. (Equality of asymptotic constants)
Ceani _  (fixed
iff J0eRVEe[0,1]: E@t) =0
Ofixed _ fixed v
iff FJte€[0,1],0 € C([0,1]) :
P(Vte[0,1]: O(t) = 6(1) - O(t)) = 1
Cfixed v _
if 30€C(0,1]): P(Vte[0,1]: Ot)=0(t) =1
See Examples 16 and 17
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Remark 14. (mean square approximation at a single point and
weighted integration)

Consider integral of weighted Brownian motion

v= [ o0-wi

with continuous p : [0, 1] — [0, ocl.
Best mean square approximation of Y based on W (t1), ..., W (tn):
Yiyoaw) = E(Y [ W(t1), ..., W(ty))

1?"'?
Resulting minimal mean square error:

1/2

en = inf{(E\Y V)P 0<t < <ty < 1}

Note: Adaption does not help here since Y is Gaussian

From general results on weighted integration (see Ritter 2000):

1 ] 2/3 i
Jm N &y = Cpim (/0 1(8)] dt>

We have
O™l = C gy

Taking the random weight p = © yields

c=(B(c 3))3/2
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The adaptive approximation )A(n(l)

Basic idea:

e Replace integrals

Jy = /t tHl(W(t) — W(ty)) dt

¢
in the definition of the Wagner-Platen scheme by suitable
approximations based on point evaluations of W.

e Adapt the discretization to the random weight ©:

The larger the value of ©()
the finer the discretization around ¢

Algorithm (essential structure):

1) Dependent on n determine coarse equidistant
prediscretization

te="~L/k,, £=0,1,...,k,
2) Compute corresponding truncated Wagner-Platen scheme
Xmmey £=0,1,... ky

3) Use truncated Wagner-Platen scheme to compute a discrete
approximation of the random weight

A~

Oty), £=0,1,...,k,—1
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4) Determine number of additional equidistant points in subin-
tervals Jts, tei1[ by

e = [n k- B
Resulting points in [ts, t¢41]
Tg;jztg—l-j'(kn-(ﬂg—l—l))_l, 7=0,1,...,u+1

5) Estimate integrals J; by (adaptive) trapezoidal rule

1 Hy

(i) ;(W(n,j) + W (re00) — 2W (1))

Y =

6) Compute approximation at ¢ = 1

kn—1
Xo(1) = XM (1) 4+ 57 0(t) - J,
(=0

Note that X,,(1) € X.

Missing details:
ad 1) Choose k, such that
lim k,/n=0

n—oo

(keeping track of size of random weight)

and

lim k2/n = oo
n—oo

(estimating size of random weight sufficiently well)
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ad 2) Truncated Wagner-Platen scheme

= XML 4 a(ty, XT(L) - (bt — to)
o(te, X (1) - (W (bes) — W (k)
+1/2- (0D 5 (tg, X (1))
X ((W(téﬂ) W (te))” — (ten — )

+ (019 4 a- a0V — /2 (6 OV)2) (1, XT(1)))
X (W (tea) = W(te)) - (ter1 — to)
(a . (0(0,1))2 +o2. 0_(0,2))(t£’)?trun0(t£))
x (W (tesr) — W(ty)’
(a(l,o) +a-a®) 4+ 02/2 ) a((];?))(té’)?trunc(té))
X (tey1 — t£)2

_ XtrunC(té) + Z fa (tg,)?truncaé)) 'Ia,tl,tHl
aeAS/Q\{(]aU)s(():])}

+ f(o,l)(té,)?tmnc(te)) (ter — o) - (W (tea) — W(te))

4 1/6-

+1/2-

Note: This scheme uses only point evaluations of W
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ad 3) Estimation of random weight

Recall
O(t) =n(t, X(t)) - 2(t)

Consider random field
U(t,s) =®(t)/P(s), t<s<1
Note: ®(t) = W(t, 1) and W(¢, )
dU(t, s) = a"V(s, X (s)) - U(t, s) ds
+00(s, X (5)) - U(t,s) dW(s), t<s<1,

-) satisfies

Euler-type scheme for approximation of W(#y, -)
Uty ) =1,
W(t 1) = ah>
W0 (g, X)) - Dt ty) - (tan — 1))
o:mxmw»»@mmwwwm—wwn
for j=4£,0+1,...,k,— 1 yields approximation of ®(ty)
O(t;) = (ty, 1)

Use
O(ty) = nts, X™™(t)) - B(ty), £=0,1,... k,— 1.
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Recall from Theorem 10

lim N-€N=C

n—oo

= \/% <E /0] |@(t)|2/3dt)

Theorem 1. (M-G 2004)

with
3/2

~

() lim ¢(X,) e(X,) = C,
(ii) lim n'-e(X,) =V 12-C.

Corollary 3. If C > 0 then )?n(l) s asymptotically optimal
in the class X for mean square approzimation of X (1).

Remark 15. (Asymptotically optimal methods for subclasses)

Same definition as X, (1) with numbers 1, (essentially) replaced
by

= |n- (BlOw))"" (Z(E@(y)ﬁ)“)‘ﬂ for X<,

and py = 0 for the class Xea",

- kn—1 .
Ly = t[ |2/3 (Z |@ |2/3> -‘ for Xﬁxed 1/’
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Remark 16. (Performance of Milstein scheme)

The Milstein scheme is, in general, not asymptotically optimal
for approximation of the solution at a single point.

Example:

dX(t)=o()dW(t), X(0)=0
Milstein scheme based on fixed discretization

O=ti<th<...<t, =1

is given by
R -1
X(tb it )(tf) - o(ty) - (W(tj1) — W(ty))
=0
and satisfies
. 1 n—1 )
e(Xi 1) = 3 (o'(te))” - (o1 — te)®.
(=0
It follows
. ) . e )?M —9. Cﬁxed
L )
and

lim n - e()/(\'(]\l/l/m/n’___’l)) = 9.

n—oc
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V. OUTLOOK

Treated in lecture What about?

global error (EH ||%)]/2 (EHX - )?Hq)]/q

p

1/2

error at t =1 (E|X(1) — )?(1)|2) (E|X(1) _ )A((l)|‘1)]/q

information point evaluations cont. lin. functionals
about W iterated Ito-integrals
dimension scalar equations systems

Optimal global approximation based on

e point evaluations of W:

Hofmann, M-G, Ritter 2001: p = q = 2, scalar equations
M-G 2002a: p < o0, g > 1, systems
M-G 2002b: p = o0, q¢ > 1, systems

e continuous linear functionals of W:
Hofmann, M-G, Ritter 2002: p = q = 2, scalar equations
e iterated [to-integrals:
Hofmann, M-G 2004: p = g = 2, scalar equations
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L,-approximation of scalar equations:

Define

Cpqla, o, x0)

— (Bllot- x

for g € [1,00[, p € [1,00] (200/(00 + 2) :=

2p/(p+

H2q/ )‘1+2 /24

b

2), and put

e </_OC 2P - (2m) /2 - exp(—2*/2) dz) v

o
for p € [1, oo
info about W min. errors asymp. const. asymp. opt. meth.
order essentially
point evaluation
Milstein
1<p=¢g< o0 N2 % - Cpqla, o, z0) with stepsize
~ lo(t, X (t))| 72/ #+?)
p=00 Euler
1
1<g¢< o (N/InN)~1/2 75 Cooqla, o, z0) with stepsize
~|o(t, X(1))|
cont. lin. func.
Uses adaptive
1
p=q=2 N—1/2 — - Cy9(a, 0, z0) Karhunen-Loeve
7r
expansion of W
iter. It6-integrals
p=q=2 N—1/2 ? ?

(non-adaptive)
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General picture seems to be:

e order of convergence of minimal errors

N1/2 if p < 00
(N/InN)7'2 if p= o0

e asymptotic constant
= Kpq(info) - Cpq(a, 0, )

where &, 4(info) only depends on error parameters p, ¢, and
the type of information about W.

e key quantity for asymptotic constants and for construction
of asymptotically optimal methods

= conditional Hélder constant |o (¢, X (¢))]

L,-approximation of systems based on point evaluations of W

e order of convergence of minimal errors as above
e key quantities for asymptotic constants and for construc-
tion of asymptotically optimal methods:
Conditional Holder constants of components of solution
and

Degree of non-commutativity of diffusion coefficient
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Optimal approximation at ¢ = 1 based on

e point evaluations of W:

M-G 2004: ¢q > 1, scalar equations
M-G 2002a: ¢ = 2, non-commutative systems

e continuous linear functionals of W or iterated Ito-integrals:

Only upper bounds from Theorem 5, see Part I1.

Scalar equations and point evaluations of W:
e order of convergence of minimal errors
= N~ (up to specific cases)

e key quantity for asymptotic constants and for construction
of asymptotically optimal methods:
random weight composed of 1t6-Taylor coefficient
functions and means square derivative of solution

Non-commutative systems and point evaluations of W
e order of convergence of minimal errors
— N—1/2

e key quantity for asymptotic constants and for construction
of asymptotically optimal methods:

random weight composed of degree of non-commutativity
and means square derivative of solution
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APPENDIX A. PROOF OF THEOREM 4(%)

Define a continuous version of the Milstein scheme by
XM (to) = o,
XM(t) = XM(te) + alte, XM (t) - (t — to)
+ote, XM (1) - (W () = W (1)
+1/2- (0D - ) (8, XM (t))
< (W(t) = W(t)* = (t — o).
for ¢ € [ty ten], £=0,1,...,n— 1.
Note:  XM(t,) = XM(t,)

Remark 17. The process XM is not a numerical method for
global approximation of X since the complete trajectories of W
are needed for its construction.

Notation |V, := (E|Y|9)'/¢ for a random variable Y

Instead of Theorem 4(i) we prove the stronger

Theorem 12. Under the assumptions of Theorem /

sup |X(t) o )A(:M(t”q <c- Amau(-
t€[0,1]

The main tool for the proof is
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Lemma 1. (Gronwall’s inequality)
Let o, 8 € R with § > 0, and f : [0,1] — [0, 00] be bounded
and Borel-measurable. If
t
Vit € [0,1] : f(t)§a+ﬁ-/f(s)ds
0
then

sup f(t) < a-exp(B).
t€(0,1]

For a proof see, e.g., Revuz and Yor 1991.

We start with moment inequalities for XM,

Lemma 2. Under the assumptions of Theorem J

(i) sup |XM(1)], < e,
t€l0,1]
(ii) sup |XM(s) — )“(’M(t)|q <c-|s—t'"?
t€[0,1]

Proof. Define f :[0,1] — [0, 00] by
f(t) = sup | XY(s)],.
s€[0,1]
Clearly, f is Borel-measurable. We show that f is bounded. Let

t € [t,ts41] and observe the regularity conditions on a and o to
obtain



(10) XMt - XM (),
<lalty, XM (k) - (t — o)),
+ IU(té,XM( 0)- (W ()= W(t))l,
+ [ (o - aD)( (te, XM (t0))
X (W) =W () = (t = )],
< (t—tg) - |alte, XM (t0))],
+en (t—1)"2 - |olte, XM (1)),
e (t—t)"? (1+ |XM(t)],),
which yields f(1) < oo since |)A(:M(t0)|q = |z

Next, we use Gronwall’s inequality to prove an upper bound for
f, which does not depend on the discretization. Put

Z(S) = Za(tja XM(tj)) : 1}t]-,tj+ﬂ(3)

J

and note that
76l < e (14 sup [KV(@I,) < e (14 1(6))
u€|0,s

Assume g > 2. By the Burkholder martingale moment inequal-
ity,

-1

XM (@), < Jzo| + - Z(l +1XM(E),) - = )

e (T4 |XM(t)],) - (t —to) +‘/
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<e <1+/0 £(s ds) te. </0t|Z(s)|st>]/q
<o (1+ [ ras+ ([ oyas) l/q)
<o (14 [ uras) "

We conclude that

qt)§c+c-/tf‘1(s)ds

for all ¢ € [0,1], which implies inequality (i) by Gronwall’s

Lemma. Clearly, inequality (ii) is a consequence of (10) and in-
equality (i). O

Next, let

Lemma 3. Under the assumptions of Theorem J

sup |U(t)|, < ¢ Apax.
t€[0,1]



73

Proof. Assume g € N and let (F;)o<t<1 denote the filtration that
is generated by W. Let ¢ € [ty, ts41]. By the regularity properties

of @ and o,
)

E(|U®)*|F,)
2w ()

- E((U(tg) + /té t V(s) ds) !

)

< U2q(t£) +c- (t — té) . Z <2q> . U2q—2'r(t£)

x ((t=te) - (14 | XM (E))”
Lemma 2 yields
E(UM7 (1)) - (1+ | XY (t)])*)
| ()l 11+ | XM ()| |5
- Ut
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Hence

U@l
< 0@+ a-- 3 (37) W™ - ¢ -1

r=1

< U5 +e- (t = 10) - (U)o, + (t = 10))™
< U@ (1+c- (= t)) +c- (t— 1),
which implies
t
sup |U(s )2‘1 <c- AifaXJrc-/ sup |U(s )|2qdu
s€[0,t] 0 s€[0,u]

for every t € [0, 1]. Use Gronwall’s Lemma to complete the proof.
U

Proof of Theorem 12.

By definition, X (¢) = z¢ + A(t) + X(t), where
At) = /0 a(s, X(s))ds, X(t)= /0 o(s, X(s))dW (s).
Similarly, XM () = zg + A(t) + %(t), where

A = /0 " alty, RV () gy, () ds
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+ n—1
/ ZU té’ 1]tz tog1) (s) dW (s)
0 =0
¢t n—1

N /0 3 (0 0O (e, XM (1)) - (W (s) — W(te)

X .l}téaté-f]] (S) dW(S) .

Fix s €]ts, te+1] and recall the above definition of V'(s). By the
regularity properties of a and o,

la(s, X (s)) — alte, XY (t)) = V(s)|
< la(s, X(s)) — alte, X (s))| + la(ts, X (5)) — alte, X (s))|
+ |a(te, XM (s)) — a(te, XM (t,))
— a2y, XM (t0)) - (XM (s) — XM (1))
+ [a®D (8, XM (1)) - (XM (s) — XM (1)
— o(te, XM (t0) - (W(s) — W(t)))]
<c - (1+|X6)) - (s=t) +c- | X(s) = XM(s)]
oo | XM(s) = XM (1)
c- (L4 [XM@)) - ((s = t) + (W(s) = W(t)?).
Hence, by property (6) and Lemma 2,

|a (8 X(s)) = alte, X" (t0)) = V(s)l2

e (141X ()[4 4+ | XY (80)]2) - Al + [ X (5) = XM (5)]2)

+1X(s) = XM(s)]2)

( max
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Use Lemma 3 and the Hdélder inequality to conclude

|A() — A(t)l]
/U Z la(s, X(s)) — alte, XM () — V(s)|

=0
X 1]te=tz+1}(8) ds

+e- U@,
1) <ec AT e / IX(s) = X¥(s)|? ds.
Similarly, for s €]ty, ts11],
|o(s, X () — a(te, XM ()

— (000D (8, XM (80)) - (W (s) = W(to)[]
<e AL 4c-|X(s)— XM(s)|2

max q

Thus, by the Burkholder inequality (assume g > 2),

(12) [5(0) - SO < e AL +e- / X () — X(s)[2ds.

Combine (11) with (12) to obtain

|X(8) = XM(8)]§ < ¢ Ay + ¢ [X(5) = XM (s)]]
for every ¢ € [0,1]. It remains to apply Gronwall’s Lemma to
finish the proof. O
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APPENDIX B. PROOF OF THEOREMS 6 AND &

We start with a result on approximation of Brownian bridges:

Lemma 4. Consider a Brownian bridge B on an interval
[S,T] and let B denote the piecewise linear interpolation of
B at the points

sg=4-(T—=S)/(m+1), £=1,...,m.

Then
. (7 - 5)°

/S E(B(t)— B(t)) dt = HCEE

Proof. Straightforward, using the fact that

E(B(t)— B())" = (3£+1$;+?;(;— 5¢)

for t € [s4, Sp41]- O

Proof of the lower bound in Theorem 8

Consider an arbitrary sequence of approximations

Xy = Xiym 0 gy € X
with

Let
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denote the corresponding underlying Brownian data and define

Zn(t) = W(t) — EW ()| D™, ¢ e]o,1].

Take a sequence of positive integers ky such that

(13) lim N'?/ky = lim ky/N =0.
N—ooo N—oo

Since ky = o(N) we may assume that X y uses in particular the
knots

t™N = t/ky, £=0,1,... ky.

Let X % denote the corresponding time-continuous Milstein scheme,
see Appendix A, and put

N N) M (N
o = (6, XN @),

Lemma 5.
.. 9/
lgln_)lélof N-e(Xy)
WO
> liminf N ';/tgm E|o(U;) - Zn(t)| dt

Proof. Theorem 12 implies
E|X = XM < /K.
Since ¢/k3 = o(N~1) by (13), it therefore suffices to analyze the

difference X ]]\‘,4 — Xyn.
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Clearly,
EIXY () =Xy’ > E|XY (1) — BXY )| DY)
Let t € [té tH}] By definition of X
XN (t) — B(XY ()| D™)
= o) 2yt +1/2 (0 OO
x (W(t) = W) — B(W (1) — W) DM))
By boundedness of ¢(®") and linear growth of o,
E|( - o)) UM)
X ((W(t) ~ W) — B(w ) - W) D))
< e B(@*UN) - (W(t) - W)
c- (L+EXM M)
< C/kN’

where the last estimate follows from Lemma 2(i).
We conclude that

(BIXY - Xn[3)"”
1/2

> Z/ E\“ It | = /by,

and it remains to observe ¢/ky = o(N~/2) due to (13). O
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The random set of discretization points used by X y is given by

= {0 0), 95 (w0, W (4™ (a0)),

Let
N / N N
mg )_#(M(]\,)ﬂ]tg ),tg }[)

denote the random number of points in ]tEN), t;:li[ and put

kn—1 o/ (N) (N)
o(t, ", X(t
ANZ E (E (E )
=0

mEN) +1
Lemma 6.
kN ! t[+] 9
l{]\rln_glcf]\/ Z/ E‘o Z}V(t)‘ dt

> liminf N/(6kY) - E(Ay).
N—oc .

Proof. Clearly,
E(loU™) - Zy@)2| D) = 20N - BE(Z3(t)| DWY)

Conditioned on the data DW). the discretization M) is fixed
and the process Zy is a Brownian bridge on each of the corre-
sponding subintervals.
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Thus

(V)

s 1
/(N) E(Zx(t)| DM dt >

0 6k - (m, N 1)

due to Lemma 4, and consequently

i ) ) ) (U™
[y Elo@) - 2u)f"at 2 1/(083) - £ ( S5
ty m,  +1

By the regularity assumptions on o,
N N N
?UM) =, x (1)
SM (N N SM (N N
< e [XVY) = X)) 0+ XY )]+ X)),
Hence, by Theorem 12, Lemma 4 and (6),
Elo?(UM) = ot X t")]° < ¢/kw,

which yields

ky—1

Z / E\a Iy dt > 1/(6K) - E(Ax) — o/ K.
Employing (13) completes the proof. O

Lemma 7.
lim inf N/(6k3%) - E(Ay) > C?
N—0C
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Proof. By assumption on X v we have

ky—1
S BmM +1) = e(Xy) < N.

The Holder inequality yields

N - E(An)
kN 1 ) (]\/) kN—l
Xt
Z E UIA E(m{™ +1)
—|-1 =0
ky—1 9/,(N) (N) 1/2 2
o (t X(t,) (V) 1/2
> E Lot (A E(m; " +1
(Z< ( ) e
ky—1 2
> (Z E\aa&“,X(t&“)\)
=0
Thus

liminf N/(6k%) - E(Ay)
N—oo :

ky—1 2
(Nhf;o—w 2 Blot", X ‘)

v

1
6
C’
as claimed. O

Combine Lemmas 5-7 to obtain the lower bound in Theorem 8.
O
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We turn to the analysis of the approximation )A(n

Recall the coarse discretization
1 =0k, £=0,... kn,
with

lim n'/2/k, = lim ky/n =0,
n—oc n—oc

that appears in the definition of )?n, and let )?1;” denote the
corresponding time-continuous version of the Milstein scheme.

Note that )2711” and X,, coincide at the points tén).

Proof of Theorem 6(ii). By definition of )/(\'n,

kn—1
kot kY Blo(t”, XM ()]
/=0
< C()?n)
kp—1
< %k +n/ka - Y Elo(t”, XM ))].
(=0

By the Lipschitz property of ¢ and Theorem 12,
Blo(t”, X (") = ot X (1)

< e BIXM@EM) - x (@t
< c/k,.
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Hence

‘1/nc()/(\'n) RNGE C"

kn—1
< [1/ne(R0) = 1k S Blo(t, X2 ()|
=0
kn—1 N
1k D7 Bl X 0) = o, X (1))
=0
kn—1 _ \/_
+ ‘1/1% S Eloe, x ™)~ Ve c‘
=0
kn—1
< kyfn+ ‘1//% N Elo(d”, X (1)) - V6. c‘.
=0
With increasing n the last sum above tends to zero, which finishes
the proof. O

We proceed with a comparison of X, and X

Lemma 8.

limsup n- E| X, — XM|? < C/V6.

n—soc
Proof. Let B, denote the o-algebra that is generated by
W), Wl
Fix £ € {0,1,...,k, — 1} and recall that X, uses
) = [nfkn - ot X ()]
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equidistant points
) =t g e (1) =1,

’.7
(n) [

in the subinterval ]tgn), triil

Note that the adaptive discretization is B,-measurable and let

W, denote the piecewise linear interpolation of W — W(tén)) at

these points.

For ¢ € [t} "] put

Valt) =1/2+ (o @) (e, X} (t"))
x (W(t) = WE)? — (t— "))

— o (8", XM (W) = W) = W) + Val2)
14

XM (t) — X, (t)]
< o, XM - W) — W) — Wa)]

n

+ [ Va(®)] + [Va(t(n)gy,)]

or Té’u[ <t < £+]

Conditioned on B,, the adaptive discretization is fixed and the

process W — W(tgn)) is a Brownian bridge on each of the subin-
(n) _(n) ]

tervals [r, ', 7, /4],
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Hence, by Lemma 4,

and we obtain
kn—l

<1/6-1/n?- c( X,).
By the regularity conditions on ¢ and Lemma 2 we have

sup B[V, (t)[> < ¢/k2.
t€[0,1]

Thus we conclude
(B X, = XM13)" < 1/V6 - 1/n- (e(X)* + c/kn.

Now, observe k,, = o(n~'/?) and use Theorem 6(ii) to obtain the
desired result. O
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Proof of the upper bound in Theorem 6(i).

By Theorem 12,
> 1/2 S
(C(Xn)) / -e(Xy)
1/2 = = ~
< (eR)" - (BIXKY - ZaDY2 + (BI|X - XM3))
< (e(Ra) "+ ((BIXY = Rl + e/ k).
Theorem 6(ii) implies

n)
)

limsup 1/k, - (c()?n))]/2 < ¢-limsup n'/?/k, = 0.

n—od n—oo
Furthermore, by Theorem 6(ii) and Lemma 8,
. S W 1/2 > S 2y1/2
limsup (c(X,)) " - (BIIXY - X,[3)"

n—oc

which finishes the proof. O

<C,

Obviously, the upper bound from Theorem 6(i) implies the upper
bound from Theorem 8, while the lower bound from Theorem 8
yields the lower bound from Theorem 6(i).
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