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Interval cooperative games versus traditional cooperative games

Interval cooperative games versus traditional cooperative
games

I N = {1, 2, ..., n} - the set of players

I v : 2N → R, v(∅) = 0 v is the characteristic function of the
game.

GN - the family of coalitional (TU) games with player set N

I w : 2N → I (R), w(∅) = [0, 0]
IGN - the family of all interval games with player set N

Example (LLR-game):
Let < N,w > be an interval game with
w(1, 3) = w(2, 3) = w(1, 2, 3) = J < [0, 0] and w(S) = [0, 0]
otherwise.
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Interval calculus

Interval Calculus

I (R) - the set of all closed intervals in R
I (R)N - the set of all n-dimensional vectors
with elements in I (R)
Let I , J ∈ I (R) with I =

[
I , I

]
, J =

[
J, J

]
, |I | = I − I and α ∈ R+.

Then,

I I + J =
[
I + J, I + J

]
I αI =

[
αI , αI

]
I I − J =

[
I − J, I − J

]
(defined only if |I | ≥ |J|)

(Moore (1979): I − J =
[
I − J, I − J

]
)

I I < J, if and only if I ≥ J and I ≥ J

I I 4 J, if and only if I ≤ J and I ≤ J



General Seminar, IAM, METU, Ankara, February 3, 2009

Convex interval games versus traditional convex games

Convex interval games versus traditional convex games

A game < N, v > is called convex (or supermodular) (Shapley
(1971)) if v(S ∪ T )+v(S ∩ T ) ≥ v(S) + v(T ) for all S ,T ⊂ N.

CGN - the class of convex games with player set N.

We call a game w ∈ IGN

I supermodular if

w(S)+w(T ) 4 w(S ∪T )+w(S ∩T ) for all S ,T ∈ 2N ; (a)

I convex if < N,w > is supermodular and its length game
< N, |w | > is also supermodular.

CIGN - the class of convex interval games with player set N.
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Properties of solutions for traditional (convex) games

Properties of solutions for traditional (convex) games

The core (Gillies (1959)) C (v) of v ∈ GN is defined by

C (v) =

{
x ∈ RN |

∑
i∈N

xi = v(N);
∑
i∈S

xi ≥ v(S) for each S ∈ 2N

}
.

C (v) 6= ∅ for each v ∈ CGN .

C : GN � RN is superadditive.

C : CGN � RN is additive.
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Properties of solutions for traditional (convex) games

Properties of solutions for traditional (convex) games

Π(N): set of permutations σ : N → N
Pσ(i) =

{
r ∈ N|σ−1(r) < σ−1(i)

}
: set of predecessors of i in σ

The marginal vector mσ(v) of v gives player i :
mσ

i (v) = v(Pσ(i) ∪ {i})− v(Pσ(i))

The Weber set (Weber (1988)) W (v) of a game v ∈ GN is the
convex hull of the n! marginal vectors mσ(v), corresponding to n!
permutations σ ∈ Π(N).

C (v) ⊂ W (v) for each v ∈ GN .

C (v) = W (v) for each v ∈ CGN .
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Properties of solutions for traditional (convex) games

Properties of solutions for traditional (convex) games

The Shapley value (Shapley (1953)) φ(v) of a game v ∈ GN is the
average of the marginal vectors of the game, i.e.,

φ(v) :=
1

n!

∑
σ∈Π(N)

mσ(v).

φ : GN → RN is additive.

φ(v) ∈ C (v) for each v ∈ CGN .
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Monotonicity properties of TU game values

Monotonicity properties of TU game values

Convex monotonicity (CvM). If
〈N, v〉, 〈N, v ′〉, 〈N, v ′ − v〉 ∈ CGN , and v ′(S) ≥ v(S) for all
S ⊂ N, then ϕ(N, v ′) ≥ ϕ(N, v).

Aggregate monotonicity If v ′(N) > v(N) and v ′(S) = v(S) for
all S $ N, then ϕ(N, v ′) ≥ ϕ(N, v).

Coalitional monotonicity. For each coalition S ⊂ N,
v ′(S) > v(S) and v ′(T ) = v(T ) for all T 6= S imply
ϕi (N, v ′) ≥ ϕi (N, v) for all i ∈ S .
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Monotonicity properties of TU game values

Monotonicity properties of TU game values

Contribution monotonicity (CM). For each i ∈ N inequalities
v ′(S ∪ {i})− v ′(S) ≥ v(S ∪ {i})− v(S) for all S 63 i imply
ϕi (N, v ′) ≥ ϕi (N, v).

Weak contribution monotonicity (WCM) (Hokari, van
Gellekom (2002)) If for all i ∈ N and all coalitions S 63 i the
inequalities v ′(S ∪ {i})− v ′(S) ≥ v(S ∪ {i})− v(S) hold, then
ϕ(N, v ′) ≥ ϕ(N, v).

Note that all these properties were defined for games with the
same sets of players. It is clear that

CM =⇒ WCM =⇒ AM. (1)

Let us check where convex monotonicity is placed in relations (1).
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Monotonicity properties of TU game values

Proposition 1: On the class of convex games GCN

WCM =⇒ CvM =⇒ AM.

Proof. Let 〈N, v〉, 〈N, v ′〉, 〈N, v ′ − v〉 be convex games such that
v ′(S) ≥ v(S) for all S ⊂ N. Then for all i ∈ N and S 63 i

v ′(S ∪ {i})− v ′(S) ≥ v(S ∪ {i})− v(S). (2)

If a value ϕ on CGN satisfies weak contribution monotonicity, then
ϕ(N, v ′) ≥ ϕ(N, v), and ϕ satisfies convex monotonicity.
Let now ϕ be any value on the class CGN that satisfies convex
monotonicity. Then for games 〈N, v〉, 〈N, v ′〉 inequalities (2) hold,
inclusively for those such that v(S) = v ′(S) for all S $ N,
v ′(N) > v(N), implying ϕ(N, v ′) ≥ ϕ(N, v).
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Monotonicity properties of TU game values

The (constrained) egalitarian solution DR(v) of v ∈ GN for TU
games was defined (Dutta and Ray (1989)) as the unique Lorenz
maximal allocation in the Lorenz core. DR(v) can be empty, but it
exists if v ∈ CGN . For each convex game 〈N, v〉 the Dutta–Ray
solution is the unique allocation in the core which Lorenz
dominates all other core allocations. The Dutta–Ray solution on
the class of convex TU games possesses many attractive properties.
In particular, Hokari and van Gellekom (2002) proved that the DR
solution over the class of convex games satisfies weak contribution
monotonicity.
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Monotonicity properties of TU game values

Monotonicity properties of TU game values
The last monotonicity property compares players’ payoffs with
respect to solution vectors in the initial game and its subgames:

Population monotonicity. If 〈N, v〉 is a convex game and
N ′ ⊂ N, then ϕi (N, v) ≥ ϕi (N

′, v) for all i ∈ N ′, where 〈N ′, v〉 is
the subgame of 〈N, v〉.

This property assures the existence of population monotonic
allocation schemes, (Sprumont (1990)). Recall that for a game
v ∈ GN a scheme a = (aiS)i∈S ,S∈2N\{∅} of real numbers is a
population monotonic allocation scheme of v if

(i)
∑

i∈S aiS = v(S) for all S ∈ 2N \ {∅},
(ii) aiS ≤ aiT for all S ,T ∈ 2N \ {∅} with S ⊂ T and for each

i ∈ S .

We notice that convexity of v is a sufficient condition for the
existence of population monotonic allocation schemes.
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Classes of cooperative interval games

Classes of cooperative interval games

We call a game w ∈ IGN

I size monotonic if < N, |w | > is monotonic, i.e.
|w | (S) ≤ |w | (T ) for all S ,T ∈ 2N with S ⊂ T .

I I-balanced if C(w) 6= ∅.

SMIGN - the class of size monotonic games with player set N.

IBIGN : class of interval balanced games with player set N

CIGN ⊂ (SMIGN ∩ IBIGN)
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Properties of solutions for (convex) interval games

Properties of solutions for (convex) interval games

The interval core:

C(w) =

{
(I1, . . . , In) ∈ I (R)N |

∑
i∈N

Ii = w(N),
∑
i∈S

Ii < w(S), ∀S ⊂ N

}

payoff interval of player i : Ii
interval-payoff vector: I = (I1, I2, . . . , In)∑

i∈N Ii = w(N): efficiency condition∑
i∈S Ii < w(S): stability condition

C : IGN � I (R)N is a superadditive map.

C : CIGN � I (R)N is an additive map.
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Properties of solutions for (convex) interval games

Properties of solutions for (convex) interval games

Let w ∈ SMIGN .

I The interval marginal vector mσ(w) of w gives player i :
mσ

i (w) = w(Pσ(i) ∪ {i})− w(Pσ(i))

I The interval Weber set W is defined by
W(w) = conv {mσ(w)|σ ∈ Π(N)}.

I The interval Shapley value Φ : SMIGN → I (R)N :

Φ(w) = 1
n!

∑
σ∈Π(N) mσ(w), for each w ∈ SMIGN (b)

W(w) ⊂ C(w) for each w ∈ CIGN .

Φ(w) ∈ C(w) for each w ∈ CIGN .
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Properties of solutions for (convex) interval games

Proposition: The interval Shapley value Φ : SMIGN → I (R)N is
additive.
Proof: First, we show that for each σ ∈ Π(N) the interval marginal
operator mσ : SMIGN → I (R)N is additive, i.e., for all
w1,w2 ∈ SMIGN , mσ(w1 + w2) = mσ(w1) + mσ(w2).
Let σ ∈ Π(N) and k ∈ N. Then,

mσ
σ(k)(w1 + w2) = (w1 + w2)(σ(1), . . . , σ(k))

− (w1 + w2)(σ(1), . . . , σ(k − 1))

= w1(σ(1), . . . , σ(k))− w1(σ(1), . . . , σ(k − 1))

+ w2(σ(1), . . . , σ(k))− w2(σ(1), . . . , σ(k − 1))

= mσ
σ(k)(w1) + mσ

σ(k)(w2).

Now, using the additivity property of interval marginal operators
we obtain that Φ : SMIGN → I (R)N is an additive map.
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Properties of solutions for (convex) interval games

Proposition: Let w ∈ SMIGN and let σ ∈ Π(N). Then,
mσ

i (w) = [mσ
i (w),mσ

i (w)] for all i ∈ N.

Proposition: Let w ∈ SMIGN and let σ ∈ Π(N). Then,
Φi (w) = [φi (w), φi (w)] for all i ∈ N.
Proof. From (b) and above Proposition we have

Φi (w) =
1

n!

∑
σ∈Π(N)

mσ
i (w) =

1

n!

∑
σ∈Π(N)

[mσ
i (w),mσ

i (w)] =

 1

n!

∑
σ∈Π(N)

mσ
i (w),

1

n!

∑
σ∈Π(N)

mσ
i (w)

 = [φi (w), φi (w)] .
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Properties of solutions for (convex) interval games

Proposition: The interval Shapley value has the population
monotonicity property on the class of convex interval games.
Proof. Let w ∈ CIGN . We have to prove that for all S ,T ∈ 2N

such that S ⊂ T and for each i ∈ N the relation
Φi (S ,wS) 4 Φi (T ,wT ) holds, where (S ,wS) and (T ,wT ) are the
corresponding subgames. We know that Φi (w) = [φi (w), φi (w)]
for each w ∈ CIGN and for all i ∈ N. Further, the fact that the
classical Shapley value φ has the population monotonicity property
on CGN implies that for each S ,T ∈ 2N such that S ⊂ T and for
each i ∈ N, φi (S ,wS) ≤ φi (T ,wT ) and φi (S ,wS) ≤ φi (T ,wT ),
from which follows

[φi (S ,wS), φi (S ,wS)] = Φi (S ,wS) 4 Φi (T ,wT )

= [φi (T ,wT ), φi (T ,wT )].
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Properties of solutions for (convex) interval games

Interval population monotonic allocation schemes (pmas)

We say that for a game w ∈ TIBIGN a scheme
A = (AiS)i∈S ,S∈2N\{∅} with AiS ∈ I (R)N is a pmas of w if

(i)
∑

i∈S AiS = w(S) for all S ∈ 2N \ {∅},
(ii) AiS 4 AiT for all S ,T ∈ 2N \ {∅} with S ⊂ T and for each

i ∈ S .

We notice that convexity of w is a sufficient condition for the
existence of interval pmas.
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Properties of solutions for (convex) interval games

Interval population monotonic allocation schemes (pmas)

Example: Let w ∈ CIGN with w(∅) = [0, 0],
w(1) = w(2) = w(3) = [0, 0], w(1, 2) = w(1, 3) = w(2, 3) = [2, 4]
and w(1, 2, 3) = [9, 15]. It is easy to check that the interval
Shapley value generates for this game the pmas depicted as

N
{1, 2}
{1, 3}
{2, 3}
{1}
{2}
{3}



1 2 3
[3, 5] [3, 5] [3, 5]
[1, 2] [1, 2] ∗
[1, 2] ∗ [1, 2]
∗ [1, 2] [1, 2]

[0, 0] ∗ ∗
∗ [0, 0] ∗
∗ ∗ [0, 0]


.
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Square solutions and related results

Square solutions and related results

Let a = (a1, . . . , an) and b = (b1, . . . , bn) with a ≤ b.
Then, we denote by a�b the vector ([a1, b1] , . . . , [an, bn]) ∈ I (R)N

generated by the pair (a, b) ∈ RN .
Let A,B ⊂ RN . Then, we denote by A�B the subset of I (R)N

defined by A�B = {a�b|a ∈ A, b ∈ B, a ≤ b}.
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Square solutions and related results

For each w ∈ IGN :

I W�(w) = W (w)�W (w);
C(w) ⊂ W�(w).

I C�(w) = C (w)�C (w) for each w ∈ IBIGN .
C(w) = C�(w) for each w ∈ IBIGN .

I Let w ∈ SMIGN and let σ ∈ Π(N). Then,
mσ

i (w) = [mσ
i (w),mσ

i (w)] for all i ∈ N.

For each w ∈ CIGN :

C(w) = W�(w).

W(w) ⊂ W�(w).
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Square solutions and related results

Proposition: C : CIGN � I (R)N is an additive map.

Proof: The interval core is a superadditive map on IGN .
Therefore, we need to show the subadditivity of the interval core,
i.e. C(w1 + w2) ⊂ C(w1) + C(w2) for all w1,w2 ∈ CIGN .
Note that mσ(w1 + w2) = mσ(w1) + mσ(w2) for each
w1,w2 ∈ CIGN . By definition of the square interval Weber set we
have W�(w1 + w2) = W (w1 + w2)�W (w1 + w2), implying

C(w1+w2) = W�(w1+w2) ⊂ W�(w1)+W�(w2) = C(w1)+C(w2).
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Inheritence of monotonicity properties by interval values

Inheritence of monotonicity properties by interval values

An interval game is a triple 〈N, (w ,w)〉 where N is a finite set of
players, w ,w : 2N → R are a lower and a upper characteristic
functions, respectively, such that for each coalition
S ⊂ N, w(S) ≤ w(S). The TU games 〈N,w〉, 〈N,w〉 are called
the lower and the upper games of the interval game 〈N, (w ,w)〉,
respectively.
Let GN be an arbitrary class of TU games with the player set N.
Further we denote by IGN the class of interval games with the
player set N such that for any 〈N, (w ,w)〉 ∈ IGN both the lower
and upper games 〈N,w〉, 〈N,w〉 belong to the class GN .



General Seminar, IAM, METU, Ankara, February 3, 2009

Inheritence of monotonicity properties by interval values

Denote by X (N,w),X (N,w) the sets of feasible payoff vectors of
the lower and upper games, and by Y (N,w),Y (N,w) the sets of
efficient payoff vectors, respectively:

X (N,w) = {x ∈ RN |
∑

i∈N xi ≤ w(N)},
X (N,w) = {x ∈ RN |

∑
i∈N xi ≤ w(N)},

Y (N,w) = {x ∈ X (N,w) |
∑

i∈N xi = w(N)},
Y (N,w) = {x ∈ X (N,w) |

∑
i∈N xi = w(N)},

Definition 1: A single-valued solution (value) φ for a class IGN of
interval games is a mapping assigning to each interval game
〈N, (w ,w)〉 ∈ IGN a pair of vectors φ(N, (w ,w)) = (x , y) ∈ R2n

such that x ∈ X (N,w), y ∈ X (N,w) and x ≤ y .
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Inheritence of monotonicity properties by interval values

Definition 2: An interval value φ on a class of interval games
IGN is generated by a TU game value ϕ if

φ(N, (w ,w)) = (ϕ(N,w), ϕ(N,w)). (3)

Equality (3) implies that the inequality

ϕ(N,w) ≤ ϕ(N,w) (4)

should hold, and, hence, not all TU game values can be extended
to the generated interval values, and even if a value can be
extended, then only for some special classes of TU and interval
games. In the sequel we consider only interval values generated by

some known TU game values.
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Inheritence of monotonicity properties by interval values

Consider the class CGN of convex TU games with a finite set of
players N. Define the class IGN of convex interval games with the
universal set of players N by the following way:

〈N, (w ,w)〉 ∈ CIGN ⇐⇒ 〈N,w〉, 〈N,w〉, 〈N,w − w〉 ∈ CGN

and w(S) ≤ w(S) for all S ⊂ N.

Given a vector x ∈ RN and a coalition S ⊂ N, by xS we denote the
projection of the vector x on the subspace RS , and by x(S) the
sum x(S) =

∑
i∈S xi .

An interval [a1, a2] dominates an interval [b1, b2], denoted by
[a1, a2] < [b1, b2], if a1 ≥ b1, a2 ≥ b2. An interval vector
a = ([a1, a

′
1], . . . , [an, a

′
n]) dominates an interval vector

b = ([b1, b
′
1], . . . , [bn, b

′
n]), a < b, if [ai , a

′
i ] < [bi , b

′
i ] for

i = 1, . . . , n.
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Inheritence of monotonicity properties by interval values

Next we show which TU game values for convex games can be
extended to the generated interval values and which ones can not.
By C (N, v) we denote the core of 〈N, v〉, and by C(N,w) the
interval core (of the interval game 〈N, (w ,w)〉,w = (w ,w):

C(N,w) = {(x , y) ∈ RN ×RN | x ∈ C (N,w), y ∈ C (N,w), x ≤ y}.

Given a TU value ϕ for the class CGN , the existence of the
generated by it interval value φ on CIGN , i.e. the fulfilment of
inequality (4) is equivalent to convex monotonicity property (CvM)
of ϕ.
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Inheritence of monotonicity properties by interval values

Relations (3) and Proposition 1 permit to check for what TU game
values for convex games the generated interval values exist or not.
It is well-known that the Shapley value satisfies contribution
monotonicity. Therefore, there exists the interval Shapley value on
the class of convex interval games (Alparslan Gök, Branzei and
Tijs (2008)). By Proposition 1 the Dutta-Ray solution for classical
convex games satisfies convex monotonicity providing the existence
of the generated Dutta– Ray interval solution on the class of
convex interval games. On the other hand, it is known that the
prenucleolus and the τ -value on the class of convex games do not
satisfy aggregate monotonicity (Hokari (2000), Hokari and van
Gellekom (2002)). Therefore, the interval prenucleolus and the
interval τ -value do not exist on the class CIGN .
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Inheritence of monotonicity properties by interval values

For interval values we demand that the properties hold both for
lower and upper games. Let φ be an interval value for the class
CIGN of interval convex games. The following definitions are the
extensions to interval convex games of the given above
monotonicity properties of TU game values.

Aggregate monotonicity If 〈N, (w ,w)〉 and 〈N, (w ′,w ′)〉 are
interval convex games such that w(S) = w ′(S),w(S) = w ′(S) for
all S $ N, and w ′(N) > w(N),w ′(N) > w(N), then
φ(N, (w ′,w ′)) < φ(N, (w ,w)).

Coalitional monotonicity. If for interval convex games
〈N, (w ,w)〉 and 〈N, (w ′,w ′)〉 for some coalition S ⊂ N the
following inequalities hold: w ′(S) > w(S),w ′(S) > w(S) and
w ′(T ) = w(T ),w ′(T ) = w(T ) for all T 6= S , then
φi (N, (w ′,w ′)) < φi (N, (w ,w)) for all i ∈ S .
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Inheritence of monotonicity properties by interval values

Contribution monotonicity (CM). For interval convex games
〈N, (w ,w)〉 and 〈N, (w ′,w ′)〉 and for each i ∈ N inequalities
w ′(S ∪ {i})− w ′(S) ≥ w(S ∪ {i})− w(S),
w ′(S ∪ {i})− w(S) ≥ w(S ∪ {i})− w(S) for all S 63 i imply
φi (N, (w ′,w ′)) < φi (N, (w ,w)).

Weak contribution monotonicity If for interval convex games
〈N, (w ,w)〉 and 〈N, (w ′,w ′)〉, for all i ∈ N, and all coalitions S 63 i
the inequalities w ′(S ∪ {i})− w ′(S) ≥ w(S ∪ {i})− w(S),
w ′(S ∪ {i})− w ′(S) ≥ w(S ∪ {i})− w(S) hold, then
φ(N, (w ′,w ′)) < φ(N, (w ,w)).

Population monotonicity. If 〈N, (w ,w)〉 is an interval convex
game and N ′ ⊂ N, then φi (N, (w ,w)) < φi (N

′, (w ,w)) for all
i ∈ N ′, where 〈N ′, (w ,w)〉 is the subgame of 〈N, (w ,w)〉.
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Inheritence of monotonicity properties by interval values

From the definitions it follows that all these properties are
inherited by interval values generated by TU game values: if a
value ϕ on the class of TU convex games CGN satisfies one of the
monotonicity properties, then the generated interval value φ on the
class CIGN satisfies the same interval property.
In particular, since the Shapley value and the Dutta–Ray solution
on the class of convex games are population monotonic, we obtain
that the interval Shapley value and the interval Dutta–Ray solution
are population monotonic on the class of interval convex games as
well.
This last monotonicity property provides the existence of interval
population monotonic allocation schemes (Alparslan Gök, Branzei
and Tijs (2008)).
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