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Data mining
is a collection of methods for extracting 

unexplored,
nontrivial,
useful, 
and interpretable

patterns, models and facts from the data.

Data mining is important to support decisions in various fields of 
science, economics and finance.



Supervised learning

Regression (forecasting)
Classification 
Parameter estimation



Non-supervised learning

Clustering
Association rule learning
Visualizing



Main Themes

Regression analysis, 
introduction
European options 
from the data mining 
point-of-view
Model selection 
principles



Regression analysis
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Two data sets for regression
Interpolation
Approximation

Regression



“Typical” data for regression modeling
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Regression model
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is a parametric family of functions.



Linear regression
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Normal equation
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Three models
X = [x.^0, x]; % matrix of substitutions

f = inline('[x.^0, x,]','x'); % f1
f = inline('[x.^0, x, x.^2, x.^3]','x');% f2
f = inline('[x.^0, x, sin(10*x)]','x'); % f3

X = f(x); % matrix of substitutions
w = (X'*X)\(X'*y); % solve normal equation
yr = X*w; % recover dependent variable
r = y-y3; % residual vector
SSE = r'*r; % sum squared errors





Questions of regression analysis

How to choose a family of models?
How to select a model from the family?
What is the data generation hypothesis?
How to set the target function?
How to tune the model parameters?



European option

The option is an instrument that conveys 
the right, but not the obligation, to engage 
in a future transaction on some underlying 
security.

European option is an option that may only 
be exercised on expiration.



Volatility of European option

European option

Ct = F (σ, P, B, K , t),

Ct — option price,
σ — volatility,
P — price of security,
B — risk-free rate,
K — strike price,
t — time to expiration.
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Volatility of European option

Historical price of security
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Volatility of European option

Historical prices of options K
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Volatility of European option

How to calculate the volatility?

Volatility most frequently refers to the standard deviation of the
returns of a financial instrument. It is often used to quantify the
risk of the instrument over a time period.

Implied volatility of an option is the volatility implied by the market
price of the option based on an option pricing model.

σ
imp = arg min

σ

(Chist − C (σ, P, B, K , t)).

We consider implied volatility as the dependent variable of the
regression model.

Our knowledge about volatility helps us to estimate the risk of capital

investments.



Volatility of European option

Implied volatility

The implied volatility depends on the time t and strike price K .



Volatility of European option

Volatility model, given by experts

A model for traders at the Russian trade system

σ = σ(w) = w1 + w2(1 − exp(−w3x
2)) +

w4 arctan(w5x)

w5

,

где x =
log(K ) − log(C (t))√

t
.

Model assumptions [Daglish, 2006]

The volatility depends on the option price.

The volatility proportional to inverse square root of the
maturity.



Historical prices

……………………

11.480.8850.690.420.250.160.105-80

11.410.7250.6250.410.220.160.105-83

11.50.7250.6250.330.2150.160.105-84

11.180.7250.480.320.210.160.105-85

11.20.7250.560.320.210.160.105-86

11.340.7250.560.360.210.160.105-87

11.290.7250.560.350.240.160.105-90

11.270.7250.560.360.240.160.105-91

PriceK6K5K4K3K2K1Maturity

K= 13.50, 13.00, 12.50, 12.00, 11.50, 11.00



Given data
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Index mapping
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Volatility models, toy version 
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Model-1
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Volatility of European option

Non-linear model

σ =

(w1K
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Hourly energy consumption 
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Weekly energy consumption



Autoregressive time series forecasting

Problem statement

Let there be given:
x = [x1, . . . , xT−1]

T , x ∈ R1 — time series,
tτ+1 − tτ = const,
k is a period and T = mk .
One must:
to forecast the next value xT .
The reshaped time series is (m × k)-matrix

X combined =



xT xT−1 . . . xT−k+1

x(m−1)k x(m−1)k−1 . . . x(m−2)k+1

. . . . . . . . . . . .
xnk xnk−1 . . . xn(k−1)+1

. . . . . . . . . . . .
xk xk−1 . . . x1

 .



Autoregressive time series forecasting

The regression problem

X combined =



xT xT−1 . . . xT−k+1

x(m−1)k x(m−1)k−1 . . . x(m−2)k+1

. . . . . . . . . . . .
xnk xnk−1 . . . xn(k−1)+1

. . . . . . . . . . . .
xk xk−1 . . . x1


.

In a nutshell,  xT xT
test

y X

 .

In terms of linear regression:

y = Xw,

y∗ = xT = 〈xT
test,w〉.



Autoregressive time series forecasting

Further model generation

Let there be given:
a set of the functions G = {g1, . . . , gr}, for example
g1 = 1, g2 =

√
x , g3 = x , g4 = x

√
x .

The generated regression model X =

g1 ◦ xT−1 . . . gr ◦ xT−1 . . . g1 ◦ xT−k+1 . . . gr ◦ xT−k+1

g1 ◦ x(m−1)k−1 . . . gr ◦ x(m−1)k−1 . . . g1 ◦ x(m−2)k+1 . . . gr ◦ x(m−2)k+1

. . . . . . . . . . . . . . . . . . . . .
g1 ◦ xnk−1 . . . gr ◦ xnk−1 . . . g1 ◦ xn(k−1)+1 . . . gr ◦ xn(k−1)+1

. . . . . . . . . . . . . . . . . . . . .
g1 ◦ xk−1 . . . gr ◦ xk−1 . . . g1 ◦ x1 . . . gr ◦ x1

 .



Time series forecasting
1. There is a historical 

time series of the  
volume off- takes 
(i.e. foodstuff).

2. Let the time series be 
homoscedastic.

3. Using the loss function 
one must forecast the 
next sample.



Asymmetrical loss function
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Let there be given:

Г = { (Xi, gi) },  i=1, …, N – histogram of the time 
series samples empirical distribution, 

L(Z, X) – loss function.

Problem:

For Г and L, one must find the optimal forecast 
value X*.

Solution:

Result:

X* – the optimal forecast.

1

*

{ ,..., } 1

arg min ( , ).
N

N

i i
Z X X i

X g L Z X
∈ =
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Ventia non sunt multiplicanda praeter necessitatem

Occam’s rasor: entities (model elements)
must not be multiplied beyond necessity

William of Ockham
1285-1349


