
1

Draft: Life insurance mathematics in discrete time

Tom Fischer

Darmstadt University of Technology, Germany

Lecture at the METU Ankara, Turkey

April 12-16, 2004



2

A recent version of the lecture notes can be downloaded under

www.mathematik.tu-darmstadt.de/˜tfischer/Ankara.pdf

This version is from April 27, 2004.

Dr. Tom Fischer

Technische Universität Darmstadt

Fachbereich Mathematik, AG 9

Schloßgartenstr. 7

64289 Darmstadt

Germany

tfischer@mathematik.tu-darmstadt.de

www.mathematik.tu-darmstadt.de/˜tfischer



3

About these notes

This is the preliminary (slide-form) version of the notes of a lecture at

the Middle East Technical University in Ankara, Turkey, held by the

author from April 12 to 16, 2004.

As the audience was quite inhomogeneous, the notes contain a brief

review of discrete time financial mathematics. Some notions and

results from stochastics are explained in the Appendix.

The notes contain several internet links to numerical spreadsheet

examples which were developed by the author. The author does not

(and cannot) guarantee for the correctness of the data supplied and

the computations taking place.
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1.1 Life insurance mathematics?

• How will you finance your living standard after having retired?

• If you have children - who will finance their education if you and

your partner die prematurely?

• How much would you pay

– per month during your working life for the guarantee of 2000

EUR per month after you have retired?

– today for the guarantee of 0.5 Mio. EUR paid on your death

when you die within the next 20 years?

• What kind of information would you like to have before giving an

answer?
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“It’s the economy, stupid.” (Carville and Clinton, 1992)

• In 2003, the total capital hold by German LI-companies was

615, 000, 000, 000 EUR.

• In 2003, the aggregate sum of premiums paid to German life

insurers was

67, 000, 000, 000 EUR.

• The aggregate sum of benefits was

75, 400, 000, 000 EUR

where 11 billion EUR were used for reserve purposes.
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• Imagine the total capital hold by LI-companies all over the world!

• How would you invest 67 billion EUR yearly in order to be

prepared to pay off even bigger guaranteed(!) sums, later?

• First time in history, the German ”Protector” had to save an

LI-company from bankruptcy. - How could that happen?

Notation: life insurance (mathematics) = LI(M)
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1.2 Preliminary remarks concerning the lecture

1.2.1 Intention

A brief introduction to life insurance mathematics in discrete time,

with a focus on valuation and premium calculation which are

considered in both, a

• classical framework with deterministic financial markets,

as well as in a

• modern framework with stochastic financial markets.

The emphasis lies on a rigorous stochastic modelling which easily

allows to embedd the classical into the modern theory.
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1.2.2 Warning

This is not a standard course in life insurance mathematics.

• Notation may differ from standard textbooks (e.g. Gerber, 1997)

or papers (e.g. Møller and Norberg).

• We will not use expressions of ä-type.

• Modern life insurance in discrete, and not continuous time - in

contrast to most recent publications

• Some important topics cannot be considered, e.g. mortality

statistics, enhanced premium principles or bonus theory.

• Lack of time - usually, one year courses are necessary.
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1.2.3 Benefits

• Classical standard literature should easily be understood after this

course.

• Modern LIM in continuous time should be better accessible,

basic concepts should be clear.

• Consistent framework for classical and modern LIM in discrete

time

• Basic principles of modern LIM are extensively discussed.

• Embedding of modern and classical LIM into modern financial

mathematics

• “State-of-the-art” numeric examples for premium calculation and

contract valuation with real data
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1.3 Introductory examples

1.3.1 Valuation in classical life insurance

• 1 year time horizon, fixed interest rate r, i.e.

1 EUR today will be worth 1 + r EUR in 1 year,

1 EUR in 1 year is worth 1
1+r EUR today.

• Persons i ∈ N =̂ independent Bernoulli variables Bi

Bi =

1 if i is dead after 1 year

0 if i is alive after 1 year
(1)

Pr(Bi = 1) = p1 > 0, Pr(Bi = 0) = p0 > 0 and p1 + p0 = 1

• Life insurance contracts with payoffs ciBi, where

ci ∈ R+ and 0 ≤ ci ≤ const for all i
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• Classical LIM states that

PV i = (1 + r)−1 · ci ·E[Bi] (2)

= (1 + r)−1 · ci · p1

present value = discounted expected payoff

• Reason: Present values/minimum fair prices allow hedging

1
m

m∑
i=1

((1 + r)PV i − ciBi)
m→∞−→ 0 a.s. (3)

Strong Law of Large Numbers by Kolmogorov’s Criterion

(cf. Section 7.3)

⇒ Contracts are “balanced in the mean”.

• The present value (2) of the contract at time 0 is also called

single net premium.
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1.3.2 Valuation in modern life insurance

• 1 year time horizon, stochastic financial market

• Persons i =̂ independent Bernoullis Bi (dead =̂ 1, alive =̂ 0)

• Payoffs: ciBi shares S, e.g. S = 1 IBM share (“unit-linked”)

• S0 = present (market) value of 1 share S at time 0

• Modern LIM states that

PV i = S0 · ci ·E[Bi] (4)

⇒ Kolmogorov’s Criterion (Strong Law of Large Numbers) cannot be

applied as contracts (payoff variables) can be highly dependent.

• Question: Why (4)?
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2 A review of classical life insurance

mathematics
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2.1 Non-stochastic finance

2.1.1 The model

• Discrete finite time axis T = {t0, t1, . . . , tn},
t0 = 0 < t1 < . . . < tn

• Deterministic financial markets

⇒ Prices of securities are deterministic positive functions on T,

e.g. S : t 7→ (1 + r)t

• Absence of arbitrage (No-arbitrage = NA)

⇒ Riskless wins are excluded!

⇒ Prices of securities are identical except for scaling (proof

trivial!)

⇒ We can assume that there is only one deterministic security with

price process S = (St)t∈T and S0 = 1 in the market.
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EXAMPLE 2.1. Fixed yearly interest rate of 5%

• T = {0, 1, 2, 3} in years

• S = (1, 1.05, 1.052, 1.053) ≈ (1, 1.05, 1.1025, 1.1576)
(compound interest)

2.1.2 The present value of a cash flow

• Cash flow XT = (Xt0 , . . . , Xtn) ∈ Rn,

i.e. at time ti one has the deterministic payoff Xti

• Under condition (NA), the present value of the cashflow XT at

time t ∈ T is

PVt(XT) =
n∑

k=0

St

Stk

Xtk
= St

∑
s∈T

S−1
s Xs. (5)
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EXAMPLE 2.2. Fixed yearly interest rate of 5%

• T = {0, 1, 2, 3} in years

• S = (1, 1.05, 1.052, 1.053) ≈ (1, 1.05, 1.1025, 1.1576)

• XT = (0, 1, 1, 1)

• Present value of XT at t = 0

PV0 = 1.05−1 + 1.05−2 + 1.05−3 ≈ 2.723

• Present value of XT at t = 3

PV3 = 1.052 + 1.05 + 1 = 3.1525

EXAMPLE 2.3 (Spreadsheet example).

www.mathematik.tu-darmstadt.de/˜tfischer/
CompoundInterest.xls
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2.2 Classical valuation

2.2.1 The model

• Discrete finite time axis T = {0, 1, . . . , T}

• Deterministic financial market (cf. Subsection 2.1)

• Probability space (B,BT , B) for the biometry

Notation: Biometric(al) data- data concerning the biological and

some of the social states of human beings (e.g. health, age, sex,

family status, ability to work)

• Evolution of biometric information is modelled by a filtration of

σ-algebras (Bt)t∈T, i.e. B0 ⊂ B1 ⊂ . . . ⊂ BT

(Information develops - to some extent - like a branching tree, an

example follows below.)

• B0 = {∅, B}, i.e. at t = 0 the state of the world is known for sure.
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• Cash flow: XT = (X0, . . . , XT ) where Xt is Bt-measurable, i.e. a

cash flow is a sequence of random payoffs

• Example: Claim of an insured person, e.g. Xt = 1000 if person

died in (t− 1, t], Xt = 0 otherwise
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2.2.2 The Expectation Principle

• See Section 7.4 for a short introduction to conditional

expectations (including a detailed example).

• The classical present value of a t-payoff X at s ∈ T is

Πt
s(X) := Ss ·E[X/St|Bs] (6)

• The classical present value of a cashflow XT at s ∈ T is

PVs(XT) :=
∑
t∈T

Πt
s(Xt) (7)

=
∑
t∈T

Ss ·E[Xt/St|Bs]

• Reason: The Strong Law of Large Numbers!

A detailed justification follows later, in the general case.
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EXAMPLE 2.4 (Term insurance).

• Market and time axis as in Example 2.2,

i.e. T = {0, 1, 2, 3} and 5% interest per year

• XT = (X0, X1, X2, X3)
Xt = 1000 if the person died in (t− 1, t] (t = 1, 2, 3)

Xt = 0 else

• Mortality per year: 1%

• The single net premium

PV0(XT) =
∑
t∈T

E[Xt/St] (8)

= 0.01 · 1000/1.05 + 0.99 · 0.01 · 1000/1.052

+ 0.992 · 0.01 · 1000/1.053

≈ 26.97
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Example 2.4 (continued)

• B = {aaa, aad, add, ddd} (a=̂ alive, d=̂ dead)

• B0 = {∅, B}; B3 = P(B)
B1 = {∅, {aaa, aad, add}, {ddd}, B}
B2 = {∅, {aaa, aad}, {add}, {ddd}, {aaa, aad, add},

{aaa, aad, ddd}, {add, ddd}, B}

• E.g. B({ddd}) = 0.01, B({aaa}) = 0.970299,

B({aaa, aad, add}) = 0.99, B({add}) = 0.0099 etc.

t = 0 1 2 3

(a) 0.99

0.01
PPPP

PPPPP

a
0.99

0.01
NNNN

NNNN

a
0.99

0.01
NNNN

NNNN

a

d d d

Figure 1: Stochastic tree for Example 2.4
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Example 2.4 (continued)

PV2(XT) =
∑
t∈T

S2 ·E[Xt/St|B2] =
∑
t∈T

(S2/St) ·E[Xt|B2] (9)

First, consider

E[X1|B2](b) = X1(b) =

1000 if b = ddd

0 else
(10)

E[X2|B2](b) = X2(b) =

1000 if b = add

0 else
(11)

E[X3|B2](b) =

0 if b ∈ {add, ddd}
10 else

(12)
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Example 2.4 (continued)

PV2(XT) ≈


1000 if b ∈ {add}
1050 if b ∈ {ddd}
9.52 else

(13)

⇒ The contract XT is worth/costs 9.52 EUR at time t = 2 if the

person has not yet died.

• Test: E[PV2(XT)] != S2 · PV0(XT) ⇒ OK

t = 0 1 2 3

(a) 0.99

0.01
PPPP

PPPPP

a
0.99

0.01
NNNN

NNNN

a
0.99

0.01
NNNN

NNNN

a

d d d
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2.3 The fair premium

2.3.1 Life insurance contracts

• Claims/benefits: Cash flow XT = (X0, . . . , XT ),
paid from the insurer to the insurant

• Premiums: Cash flow YT = (Y0, . . . , YT ),
paid from the insurant to the insurer

• Contract from the viewpoint of the insurer: YT −XT, i.e.

(Y0 −X0, . . . , YT −XT )

• Usually, premiums are paid in advance. Premiums can be

– one-time single premiums.

– periodic with constant amount.

– periodic and varying.
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2.3.2 The Principle of Equivalence

• The net premium or minimum fair premium is chosen such that

PV0(XT) = PV0(YT), (14)

i.e. the present value of the premium flow has to equal the present

value of the flow of benefits (fairness argument!).

• The Principle of Equivalence (14) and the Expectation Principle

(7) are the cornerstones of classical life insurance mathematics.

• In the beginning, the value of the contract is PV0(YT −XT) = 0.
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EXAMPLE 2.5 (Term insurance with constant premiums).

• Extend Example 2.4 by assuming for the premiums

YT = (Y0, Y1, Y2, Y3)
Yt = D > 0 if the person is alive at t (t = 0, 1, 2)

Yt = 0 else

• From the Principle of Equivalence we obtain

PV0(YT) = D · (1 + 0.99/1.05 + 0.992/1.052) (15)

!= PV0(X)

≈ 26.97

• The minimum fair annual premium is D ≈ 9.52 EUR.
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2.4 Mortalities - The notation

• tqx := probability that an x year old will die within t years

• s|tqx := probability that an x year old will survive till s and die in

(s, s + t]

• tpx := probability that an x year old will survive t years

• Observe: s+tpx = spx · tpx+s and s|tqx = spx · tqx+s

• If t = 1, t is often omitted in the above expressions.

• Example: Present value of XT from Example 2.4 in new notation

PV0(XT) = 1000 · (S−1
1 · qx + S−1

2 · 1|qx + S−1
3 · 2|qx)

• Caution: Insurance companies usually use two different mortality

tables depending whether a death is in financial favour

(e.g. pension), or not (e.g. term insurance) for the company.
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• Reason for the different tables: In actuarial practice mortality

tables contain safety loads.

• In our examples, tqx, s|tqx and tpx will be taken from (or

computed by) the DAV (Deutsche Aktuarvereinigung) mortality

tables “1994 T” (Loebus, 1994) and “1994 R” (Schmithals and

Schütz, 1995) for men.

• Hence, the used mortality tables are first order tables.

• The use of internal second order tables of real life insurance

companies would be more appropriate. However, for competitive

reasons they are usually not published.

• All probabilities mentioned above are considered to be constant in

time. Especially, to make things easier, there is no “aging shift”

applied to table “1994 R”.
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2.5 The reserve

2.5.1 Definition and meaning

• The reserve at time s is defined by

Rs(XT, YT) :=
∑
t≥s

Πt
s(Xt − Yt), (16)

i.e. (16) is the negative value of the contract cash flow after t

(including t; notation may differ in the literature).

• In preparation of future payments, the company should have (16)

in reserve at t (due to the definition, before contractual payments

at t take place).

• Whole LI (cf. page 38): Mortality increases with time. Hence,

constant premiums mean positive and increasing reserve. (The 20

year old pays the same premium as the 60 year old!)
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2.5.2 A recursive formula

• By definition (16),

Rs(XT, YT) =
∑
t≥s

Ss ·E[(Xt − Yt)/St|Bs] (17)

= Xs − Ys + (Ss/Ss+1)
∑
t>s

Ss+1 ·E[(Xt − Yt)/St|Bs]

= Xs − Ys + (Ss/Ss+1)E[Rs+1(XT, YT)|Bs]

• Note that Rs is Bs-measurable (s ∈ T).

• The reserve at t is usually considered under the assumption that

the insured individual still lives.

• Assume for (Bt)t∈T the model of Example 2.4, i.e. at t ∈ T the

person can be dead or alive - no other states are considered.

• We denote Ra
s = Rs(XT, YT)|{alive at s}, Rd

s , X
a
s , Y a

s analogously.
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• Observe that the events {alive at s + 1} and

{alive at s, but dead at s + 1} are minimal sets in Bs+1.

• Hence, one obtains for an insured person of age x

Ra
s = (Ss/Ss+1)[px+sR

a
s+1 + qx+sR

d
s+1|{alive at s}] + Xa

s − Y a
s .

(18)

• All expressions above are constant!

• For the contracts explained in Section 2.6, Rd
s+1|{alive at s} is

simple to compute and (18) therefore suitable for applications

(cf. Section 2.7).

s = 0 1 2 3

(a)
px

qx
RRRR

RRRRR
a

px+1

qx+1
PPPP

PPPP

a
px+2

qx+2
PPPP

PPPP

a

d d d
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2.6 Some contract forms

Payments (benefits) are normed to 1 (cf. Gerber, 1997).

• Whole life insurance: Provides the payment of 1 EUR at the end

of the year of death. As human beings usually live not longer than

130 years, the next contract type may be used instead.

• Term insurance of duration n: Provides n years long the

payment of 1 EUR at the end of the year of death (Example 2.4).

• Pure endowment of duration n: Provides the payment of 1
EUR at n if the insured is alive.

• Endowment: Combination of a term insurance and pure

endowment with the same duration

• Life annuity: Provides annual payments of 1 EUR as long as the

beneficiary lives (pension).
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2.7 Spreadsheet examples

www.mathematik.tu-darmstadt.de/˜tfischer/
ClassicalPremiums+Reserves.xls

• Observe the differences between ”1994 T” and ”1994 R”.

• Use different interest rates to observe how premiums depend on

them.

• Implement flexible interest rates.

• Why is Ra
0 , the reserve at t = 0, always identical to 0?
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2.8 Historical remarks

Edmond Halley (1656-1742)

“An Estimate of the Degrees of the Mortality of Mankind, drawn from

curious Tables of the Births and Funerals at the City of Breslaw; with

an Attempt to ascertain the Price of Annuities upon Lives”,

Philosophical Transactions of the Royal Society of London, 1693

• Contains the first modern mortality table.

• Proposes correctly the basics of valuation by the Expectation and

the Equivalence Principle.

• Halley had a very good intuition of stochastics though not having

the measure theoretical foundations of the theory.
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Figure 2: Edmond Halley (1656-1742)
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Pierre-Simon Marquis de Laplace (1749-1827)

• Was the first to give probability proper foundations (Laplace,

1820).

• Applied probability to insurance (Laplace, 1951).

⇒ Life insurance mathematics is perhaps the oldest science for which

stochastic methods were developed and applied.
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Figure 3: Pierre-Simon de Laplace (1749-1827)
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3 Basic concepts of discrete time financial

mathematics
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3.1 The model

• Frictionless financial market

• Discrete finite time axis T = {0, 1, 2, . . . , T}

• (F, (Ft)t∈T, F) a filtered probability space, F0 = {∅, F}

• Price dynamics given by an adapted Rd-valued process

S = (St)t∈T, i.e. d assets with price processes

(S0
t )t∈T, . . . , (Sd−1

t )t∈T are traded at times t ∈ T \ {0}.

• (S0
t )t∈T is called the money account and features S0

0 = 1 and

S0
t > 0 for t ∈ T.

• MF = (F, (Ft)t∈T, F, T, S) is called a securities market model.
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3.2 Portfolios and strategies

• Portfolio due to MF : θ = (θ0, . . . , θd−1), real-valued random

variables θi (i = 0, . . . , d− 1) on (F,FT , F)

• A t-portfolio θt is Ft-measurable. The value of θt at s ≥ t

〈θ, Ss〉 =
d−1∑
j=0

θjSj
s . (19)

• Ft is interpreted as the information available at time t. Economic

agents take decisions due to the available information.

⇒ A trading strategy is a vector θT = (θt)t∈T of t-portfolios θt.

• A self-financing strategy θT is a strategy such that

〈θt−1, St〉 = 〈θt, St〉 for each t > 0, i.e. at any time t > 0 the

trader does not invest or consume any wealth.
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3.3 No-arbitrage and the Fundamental Theorem

• S satisfies the so-called no-arbitrage condition (NA) if there is

no s.f.-strategy such that 〈θ0, S0〉 = 0 a.s., 〈θT , ST 〉 ≥ 0 and

F(〈θT , ST 〉 > 0) > 0 ⇒ no riskless wins!

• S := (St/S0
t )t∈T = discounted price process

THEOREM 3.1 (Dalang, Morton and Willinger, 1990). The price

process S satisfies (NA) if and only if there is a probability measure Q
equivalent to F such that under Q the process S is a martingale.

Moreover, Q can be found with bounded Radon-Nikodym derivative

dQ/dF.

• Q is called equivalent martingale measure (EMM).

• 3.1 is called the Fundamental Theorem of Asset Pricing.

• The proof needs a certain form of the Hahn-Banach Theorem.
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3.4 Valuation

• A valuation principle on a set Θ of portfolios is a linear mapping

πF : θ 7→ (πF
t (θ))t∈T, where (πF

t (θ))t∈T is an adapted R-valued

stochastic process (price process) such that

πF
t (θ) = 〈θ, St〉 =

d−1∑
i=0

θiSi
t (20)

for any t ∈ T for which θ is Ft-measurable.

• Fundamental Theorem ⇒ S′ = ((S0
t , . . . , Sd−1

t , πF
t (θ)))t∈T fulfills

(NA) if and only if there exists an EMM Q for S′ - that means

πF
t (θ) = S0

t ·EQ[〈θ, ST 〉/S0
T |Ft]. (21)

• If we price a portfolio under (NA), the price process must have the

above form for some Q. (Question: Which Q?)
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• Considering a t-portfolio θ, it is easy to show that for s < t

πF
s (θ) = S0

s ·EQ[〈θ, St〉/S0
t |Fs]. (22)

• Sometimes it is more comfortable to use a valuation principle

directly defined for payoffs.

• An Ft-measurable payoff X always corresponds to a t-portfolio θ

and vice versa. E.g. for θ = X/S0
t · e0 one has X = 〈θ, St〉, where

ei denotes the (i− 1)-th canonic base vector in Rd.

• So, with X = 〈θ, St〉, (22) becomes

Πt
s(X) := S0

s ·EQ[X/S0
t |Fs]. (23)

• Compare (23) with (6)!
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3.5 Market completeness

• A securities market model is said to be complete if there exists a

replicating strategy for any portfolio θ, i.e. there is some

self-financing θT = (θt)t∈T such that θT = θ.

• (NA) implies unique prices and therefore a unique EMM Q.

THEOREM 3.2 (Harrison and Kreps (1979); Taqqu and

Willinger (1987); Dalang, Morton and Willinger (1990)). A

securities market model fulfilling (NA) is complete if and only if the

set of equivalent martingale measures is a singleton.

• 3.2 is sometimes also called Fundamental Theorem.

• A replicating strategy is a perfect hedge.
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3.6 Numeric example: One-period model

• Time axis T = {0, 1}

• F = {ω1, ω2, ω3}, i.e. 3 states of the world at T = 1

• S0 = (1, 1, 1) and

S0
1 S1

1 S2
1

ω1 1.5 1 2

ω2 1.5 1.5 1.5

ω3 1.5 2 1

• We want to compute the price of an option with payoff X given

by x = (X(ω1), X(ω2), X(ω3)) = (0.5, 1.5, 2.5) by two methods:

1. by the - as we will see - uniquely determined EMM.

2. by the respective replicating strategy/portfolio.

• For technical reasons we define the (full-rank) matrix

SM := (Si,j)i,j=1,2,3 := (Si
1(ωj))i,j=1,2,3
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1.

• The condition for a EMM Q is

SM · (Q(ω1), Q(ω2), Q(ω3))T · 1
1.5 = (1, 1, 1)T .

• The solution is Q(ω1) = Q(ω2) = Q(ω3) = 1/3 and unique, as

SM has full rank.

• x/S0
1 = (1/3, 1, 5/3)

• Π1
0(X) = EQ[X/S0

1 ] = 1/9 + 1/3 + 5/9 = 1.

2.

• The hedge θ with ST
MθT = xT is uniquely given by θ = (1, 1,−1).

• Its price is S0θ
t = 1.

⇒ As expected (NA!), both methods determine the same price.
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3.7 Example: The Cox-Ross-Rubinstein model

(CRR)

• 1 bond: S0
t = (1 + r)t for t ∈ {0, 1, . . . , T} and r > 0

• 1 stock as in Figure 4, i.e. S1
0 > 0, F(S1

2 = udS1
0) = p2(1− p)2,

etc. with 0 < d < u and 0 < p < 1

• Condition for EMM: S1
0 = 1

1+r (p∗uS1
0 + (1− p∗)dS1

0)
⇒ p∗ = 1+r−d

u−d

• Indeed, p∗ gives a unique EMM as long as u > 1 + r > d.

⇒ The CRR model is arbitrage-free and complete.

• p∗ does not depend on the “real-world” probability p!
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t = 0 1 2 3
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Figure 4: Binomial tree for the stock in the CRR model (T=3).
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• The CRR model is complete!

• Replicating strategies for all types of options can be computed by

backward induction.

• Imagine being at t = 2 in the state uu and having to hedge an

option with payoff X at T (one-period sub-model!).

⇒ We simply have to solve the following equation for s and b:

s · S1
3(uuu) + b · S0

3(uuu) = X(uuu) (24)

s · S1
3(uud) + b · S0

3(uud) = X(uud).

s is the number of stocks, b the number of bonds.

• The hedge portfolios at other times and states can be computed

analogously (going back in time).

• Observe, that (23) and the computed hedge automatically

generate the same value process (if not ⇒ arbitrage!).
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3.8 Numeric example with spreadsheet

• S1
0 = 100; u = 1.06, d = 1.01, r = 0.05 ⇒ p∗ = 0.8

• Consider a European call option with maturity t = 3 and strike

price K = 110 EUR, i.e. with value X = (S1
3 − 110)+ at t = 3.

• Compute the price process (ΠT
t (X))t∈T of the option by Equation

(23) (see Figure 5 for the solution).

www.mathematik.tu-darmstadt.de/˜tfischer/CRR.xls

• Try to understand the spreadsheet, expecially the computing of

and the tests for the replicating strategy!

• Use the spreadsheet to price and replicate an arbitrarily chosen

payoff (option) at time t = 3.
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t = 0 1 2 3
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2.0222
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gggggggggg
0

0
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0

Figure 5: The price process (ΠT
t (X))t∈T of the European call
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4 Valuation in modern life insurance

mathematics

Literature: F. (2003, 2004)
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4.1 An introduction to modern valuation

• Product space (F, (Ft)t∈T, F)⊗ (B, (Bt)t∈T, B); T = {0, . . . , T}

• d assets with price process(es) S = ((S0
t , . . . , Sd−1

t ))t∈T

• Complete arbitrage-free financial market, unique EMM Q

• Portfolio θ = (θ0, . . . , θd−1)
(vector of integrable FT ⊗ BT -measurable random variables)

• Random payoff 〈θ, ST 〉 =
∑d−1

j=0 θjSj
T at time T

PV0(θ) = π0(θ) = EQ⊗B[〈θ, ST 〉/S0
T ] (25)

Fubini= EQ[〈EB[θ], ST 〉/S0
T ]

fair/market price of biometrically expected portfolio

• History: Brennan and Schwartz (1976), Aase and Persson (1994),

Persson (1998) and others
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EXAMPLE 4.1 (cf. Section 1.3.2).

• 1 year time horizon (T = 1)

• Person modelled as a Bernoulli variable Bi (dead =̂ 1, alive =̂ 0)

• Payoff: X = ciBiS
1
T = ciBi shares of type 1 at T (“unit-linked”)

• S1
0 = present (market) value of 1 share at time 0

• The present value of X

ΠT
0 (X) = EQ⊗B[X/S0

T ] (26)

Fubini= EQ[ci ·EB[Bi] · (S1
T /S0

T )]

= ci ·EB[Bi] ·EQ[S1
T /S0

T ]

= S1
0 · ci ·EB[Bi]
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• Reasons for the product measure approach (25)

– risk-neutrality towards biometric risks

– minimal martingale measure Q⊗ B

– FT = {∅, F} implies classical Expectation Principle

• Questions

⇒ Does the product measure approach follow from the demand

for hedges such that mean balances converge to 0 a.s.?

⇒ Can we find a system of axioms for modern life insurance?

• Result

8 principles (7 axioms) are a reasonable framework for modern

life insurance and imply the product measure approach
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4.2 Principles of modern life insurance mathematics

1. Independence of biometric and financial events

• Death or injury of persons independent of financial events

(e.g. Aase and Persson, 1994)

• Counterexamples may occur in real life

2. Complete arbitrage-free financial markets

• Reasonable from the viewpoint of insurance

• In real life, purely financial products are bought from banks or

can be traded or replicated in the financial markets.

• Literature: Assumption of a Black-Scholes model (cf. Aase and

Persson (1994), Møller (1998))

3. Biometric states of individuals are independent

• Standard assumption also in classical life insurance

• Counterexamples like e.g. married couples are irrelevant.
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4. Large classes of similar individuals

• Large classes of individuals of the same age, sex and health

status (companies have thousands of clients).

• A company should be able to cope with such a large class even

if all individuals have the same kind of contract.

5. Similar individuals can not be distinguished

• Similar individuals (in the above sense) should pay the same

premiums for the same types of contracts (fairness!).

• Companies pursue e.g. the same hedges for the same kind of

contracts with similar individuals.

6. No-arbitrage pricing

• It should not be able to make riskless wins when trading with

life insurance contracts (e.g. Delbaen and Haezendonck, 1989).

7. Minimum fair prices allow (purely financial) hedging such that
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mean balances converge to 0 almost surely

• Compare with the examples in the Sections 1.3.1 and 1.3.2.

• Analogy to the classical case: The minimum fair price (net

present value) of any contract (from the viewpoint of the

insurer) should at least cover the price of a purely financial

hedging strategy that lets the mean balance per contract

converge to zero a.s. for an increasing number of clients.

8. Principle of Equivalence

• Future payments to the insurer (premiums) should be

determined such that their present value equals the present

value of the future payments to the insured (benefits).

⇒ The liabilities (benefits) can somehow be hedged working with

the premiums.

• Cf. the classical case (14)
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4.3 The model

AXIOM 1. A common filtered probability space

(M, (Mt)t∈T, P) = (F, (Ft)t∈T, F)⊗ (B, (Bt)t∈T, B) (27)

of financial and biometric events is given, i.e. M = F ×B,

Mt = Ft ⊗ Bt and P = F⊗ B. Furthermore, F0 = {∅, F} and

B0 = {∅, B}.

• Biometry and finance are independent!

• (B, (Bt)t∈T, B) describes the development of the biological states

of all considered human beings.

• No particular model for the development of the biometric

information!

• Cf. Principle 1
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AXIOM 2. A complete securities market model

MF = (F, (Ft)t∈T, F, T, F S) (28)

with |FT | < ∞ and a unique equivalent martingale measure Q are

given. The common market of financial and biometric risks is denoted

by

MF×B = (M, (Mt)t∈T, P, T, S), (29)

where S(f, b) = F S(f) for all (f, b) ∈ M .

• MF×B is understood as a securities market model.

• |FT | < ∞ as there are no discrete time financial market models

which are complete and have a really infinite state space

(cf. Dalang, Morton and Willinger, 1990).

• Cf. Principle 2
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AXIOM 3. There are infinitely many human individuals and we have

(B, (Bt)t∈T, B) =
∞⊗

i=1

(Bi, (Bi
t)t∈T, Bi), (30)

where BH = {(Bi, (Bi
t)t∈T, Bi) : i ∈ N+} is the set of filtered

probability spaces which describe the development of the i-th

individual (N+ := N \ {0}). Each Bi
0 is trivial.

• B0 is also trivial, i.e. B0 = {∅, B}.

• Cf. Principle 3

AXIOM 4. For any space (Bi, (Bi
t)t∈T, Bi) in BH there are infinitely

many isomorphic (identical, except for the index) ones in BH .

• Cf. Principle 4
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DEFINITION 1. A general life insurance contract is a vector

(γt, δt)t∈T of pairs (γt, δt) of t-portfolios in Θ (to shorten notation we

drop the inner brackets of ((γt, δt))t∈T). For any t ∈ T, the portfolio γt

is interpreted as a payment of the insurer to the insurant (benefit) and

δt as a payment of the insurant to the insurer (premium), respectively

taking place at t. The notation (iγt,
iδt)t∈T means that the contract

depends on the i-th individual’s life, i.e. for all (f, x), (f, y) ∈ M

(iγt(f, x), iδt(f, x))t∈T = (iγt(f, y), iδt(f, y))t∈T (31)

whenever pi(x) = pi(y), pi being the canonical projection of B onto

Bi.

• Benefits at t: γt

• Premiums at t: δt

⇒ Viewpoint of the insurer: company gets δt − γt at t
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AXIOM 5. Suppose a suitable valuation principle π on Θ. For any

life insurance contract (γt, δt)t∈T the Principle of Equivalence

demands that

π0

(
T∑

t=0

γt

)
= π0

(
T∑

t=0

δt

)
. (32)

• Observe the analogy to the classical case.

• Cf. Principle 8 and the classical case (14)
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AXIOM 6. Any valuation principle π taken into consideration must

for any t ∈ T and θ ∈ Θ be of the form

πt(θ) = S0
t ·EM[〈θ, ST 〉/S0

T |Ft ⊗ Bt] (33)

for a probability measure M ∼ P. Furthermore, one must have

πt(F θ) = πF
t (F θ) (34)

P-a.s. for any MF -portfolio F θ and all t ∈ T, where πF
t is the price

operator in MF .

• Cf. Principle 6
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DEFINITION 2.

(i) Define

Θ = (L1(M,MT , P))d (35)

and

ΘF = (L0(F,FT , F))d, (36)

where ΘF can be interpreted as a subset of Θ by the usual

embedding since all Lp(F,FT , F) are identical for p ∈ [0,∞].

(ii) A set Θ′ ⊂ Θ of portfolios in MF×B is called independently

identically distributed due to (B,BT , B), abbreviated B-i.i.d.,

when for almost all f ∈ F the random variables {θ(f, .) : θ ∈ Θ′}
are i.i.d. on (B,BT , B). Under Axiom 4, such sets exist and can

be countably infinite.
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(iii) Under the Axioms 1 to 3, a set Θ′ ⊂ Θ satisfies condition (K) if

for almost all f ∈ F the elements of {θ(f, .) : θ ∈ Θ′} are

stochastically independent on (B,BT , B) and

||θj(f, .)||2 < c(f) ∈ R+ for all θ ∈ Θ′ and all j ∈ {0, . . . , d− 1}.
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AXIOM 7. Under the Axioms 1 - 4 and 6, a minimum fair price is a

valuation principle π on Θ that must for any θ ∈ Θ fulfill

π0(θ) = πF
0 (H(θ)) (37)

where

H : Θ −→ ΘF (38)

is such that

(i) H(θ) is a t-portfolio whenever θ is.

(ii) H(1θ) = H(2θ) for B-i.i.d. portfolios 1θ and 2θ.

(iii) for t-portfolios {iθ : i ∈ N+}B−i.i.d. or {iθ : i ∈ N+}K one has

1
m

m∑
i=1

〈iθ −H(iθ), St〉
m→∞−→ 0 P-a.s. (39)

• Cf. Pinciples 5 and 7

• Hedge H(θ) does not react on biometric events after t = 0.
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4.4 The main result on valuation

THEOREM 4.2 (F., 2003). Under the Axioms 1-4, 6 and 7, the

minimum fair price π on Θ (=integrable portfolios) is uniquely

determined by M = Q⊗ B, i.e. for θ ∈ Θ and t ∈ T

πt(θ) = S0
t ·EQ⊗B[〈θ, ST 〉/S0

T |Ft ⊗ Bt]. (40)

• Q⊗ B is EMM for S in the product space

• Result/deduction by axiomatic approach is new

• The hedges (cf. Principle/Axiom 7) are (uniquely) determined by

EB[.] (L2-approximation)

• Proof of Theorem 4.2 is a little laborious (cf. F., 2003).

• (6) is nothing but (40) for the special case Ft = {∅, F},
i.e. for deterministic financial markets.
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Some results needed for the proof of Theorem 4.2:

LEMMA 1. Let (gn)n∈N and g be a sequence, respectively a function,

in L0(F ×B,F ⊗ B, F⊗ B), i.e. the real valued measurable functions

on F ×B, where (F ×B,F ⊗ B, F⊗ B) is the product of two

arbitrary probability spaces. Then gn → g F⊗ B-a.s. if and only if

F-a.s. gn(f, .) → g(f, .) B-a.s.

LEMMA 2. Under Axiom 1 and 2, one has for any θ ∈ Θ

H∗(θ) := EB[θ] ∈ ΘF . (41)

There is a self-financing strategy replicating H∗(θ) and under Axiom 6

πt(H∗(θ)) = S0
t ·EQ⊗B[〈θ, ST 〉/S0

T |Ft ⊗ B0] (42)

for t ∈ T. Moreover, H∗ fulfills properties (i), (ii) and (iii) of Axiom

7.
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LEMMA 3. Under the Axioms 1 - 4 and 6, any H : Θ → ΘF fulfilling

(i), (ii) and (iii) of Axiom 7 fulfills for any θ in some ΘB−i.i.d.

πt(H(θ)) = S0
t ·EQ⊗B[〈θ, ST 〉/S0

T |Ft ⊗ B0], t ∈ T. (43)

• There is no reasonable purely financial hedging method (i.e. a

strategy not using biometric information) for the relevant

portfolios with better convergence properties than (41).

Also nice to know:

LEMMA 4. Under Axiom 1 and 2, for any θ ∈ Θ, any t ∈ T and for

M ∈ {F⊗ B, Q⊗ B}

EM[〈θ −H∗(θ), St〉] = 0. (44)

Proof. By Fubini’s Theorem.
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4.5 Hedging and some implications

• Suppose Axiom 1 to 4

• Life insurance contracts {(iγt,
iδt)t∈T : i ∈ N+} with

{iγt : i ∈ N+}K and {iδt : i ∈ N+}K for all t ∈ T

• Buy the portfolios (or strategies replicating) EB[iγt] and −EB[iδt]
for all i ∈ N+ and all t ∈ T.

• Mean total payoff per contract at time t

1
m

m∑
i=1

〈iδt − iγt −EB[iδt − iγt], St〉
m→∞−→ 0 F⊗ B-a.s. (45)

• Also the mean final balance converges

1
m

m∑
i=1

T∑
t=0

〈iδt−iγt−EB[iδt−iγt], ST 〉
m→∞−→ 0 F⊗ B-a.s. (46)
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• Static risk management!

• This is not standard mean variance hedging. (cf. Bouleau and

Lamberton (1989), Duffie and Richardson (1991))

• Other hedging approaches e.g. in Møller (2002)

• The Principle of Equivalence (32) applied under the minimum fair

price (25):

T∑
t=0

π0(EB[−iδt + iγt]) =
T∑

t=0

π0(iδt − iγt) = 0. (47)

⇒ Under (32) and (25), a LI-company can without any costs at time

0 (!) pursue a s.f. trading strategy such that the mean balance per

contract at any time t converges to zero almost surely for an

increasing number of individual contracts.

• Realization would demand the precise knowledge of the second

order base given by the Axioms 1 to 4.
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Arbitrage like trading strategies

• Suppose {iθ, i ∈ N+}B−i.i.d. and sell {1θ, . . . , mθ} at prices

π0(iθ) + ε, where ε > 0 is an additional fee and π is as in (25).

• Hedge each iθ as above, which costs π0(iθ).

⇒ The balance converges as explained above, but additionally ε per

contract was gained at t = 0.

• The safety load ε makes in the limit a deterministic money making

machine out of the insurance company.
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• L2-framework, i.e. 〈θt, St〉 of any considered t-portfolio θt lies in

L2(M,Mt, P).

⇒ EB[.] is the orthogonal projection of L2(M,Mt, P) onto its purely

financial (and closed) subspace L2(F,Ft, F).

⇒ Hilbert space theory: The payoff 〈EB[θt], St〉 = EB[〈θt, St〉] of the

hedge H∗(θt) is the best L2-approximation of the payoff 〈θt, St〉
of the t-portfolio θt by a purely financial portfolio in MF .

• Minimal martingale measure: M = Q⊗ B minimizes

||dM/dP− 1||2 under EB[dM/dP] = dQ/dF (implied by Axiom

6). Under some additional technical assumptions, this property is

a characterization of the so-called minimal martingale measure in

the time continuous case (cf. Schweizer (1995b), Møller (2001)).

⇒ Q⊗ B can be interpreted as the EMM which lies “next” to

P = F⊗ B due to the L2-metric.
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5 Examples
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5.1 Preliminaries

5.1.1 Interest rates and zero-coupon bonds

• A financial product which guarantees the owner the payoff of one

currency unit at time t is called a zero-coupon bond (ZCB) with

maturity t.

• The price of a ZCB at time s < t is denoted by p(s, t− s) where

t− s is the time to maturity and p(s, 0) := 1.

• Accumulations (sums) of ZCBs are called coupon bonds; the

price of a coupon bond is given by the sum of the prices of the

respective ZCB it consists of

• ”Real world” examples: Debt securities & government bonds

(hopefully non-defaultable)
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• Spot (interest) rate R(t, τ) for the time interval [t, t + τ ]

R(t, τ) := − log p(t, τ)
τ

(48)

• Yield curve at time t is the mapping with τ 7→ R(t, τ) for τ > 0

• Spot Rates are continuously compounded. Discrete interest rates

R′ via 1 + R′ = eR, i.e.

e−τR = p = (1 + R′)−τ (49)

• For any ZCB one has a corresponding interest rate R (R′) and

vice versa

• In a stochastic market, (R(t, τ))t∈T and (p(t, τ))t∈T are stochastic

processes!



5 EXAMPLES 84

Maturity T (in years)
108642

R(0,T)

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Figure 6: Hypothetical yield curve at time 0
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5.1.2 Real data

• Figure 7 shows the historical yield structure (i.e. the set of yield

curves) of the German debt securities market from September

1972 to April 2003 (taken from the end of each month).

• The maturities’ range is 0 to 28 years. The values for τ > 0 were

computed via a parametric presentation of yield curves (the

so-called Svensson-method; cf. Schich (1997)) for which the

parameters can be taken from the Internet page of the German

Federal Reserve (Deutsche Bundesbank; www.bundesbank.de).

• The implied Bundesbank values R′ are estimates of discrete

interest rates on notional zero-coupon bonds based on German

Federal bonds and treasuries (cf. Schich, 1997) and have to be

converted to continuously compounded interest rates (as implicitly

used in (48)) by R = ln(1 + R′).
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Figure 7: Historical yields of the German debt securities market
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5.1.3 The present value of a deterministic cash flow

• Discrete time axis T = {t1, . . . , tn}, t1 < . . . < tn

• Deterministic cash flow: XT = (Xt1 , . . . Xtn
) ∈ Rn, i.e. at time

ti one has the fixed (deterministic) payoff Xti
.

• Under condition (NA) the present value of the cashflow X at time

0 is

PV0(XT) =
n∑

k=1

p(0, tk)Xtk
. (50)

• Cf. Equation (5)
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5.2 Traditional contracts with stochastic interest

rates

• LI-contract for i given by two cash flows (iγt)t∈T = (
iCt

S0
t

e0)t∈T

and (iδt)t∈T = (
iDt

S0
t

e0)t∈T with T = {0, 1, . . . , T} in years.

• iγt = iδt = 0 for t greater than some Ti ∈ T, i.e. contract has an

expiration date Ti, and each iCt for t ≤ Ti given by
iCt(f, b) = ic iβ

γ
t (bi) for all (f, b) = (f, b1, b2, . . .) ∈ M where ic

a positive constant. Let (iδt)t∈T be defined analogously with the

variables iDt,
id and iβδ

t . Suppose that iβ
γ(δ)
t is Bi

t-measurable

with iβ
γ(δ)
t (bi) ∈ {0, 1} for all bi ∈ Bi (t ≤ Ti).

• e0/S0
t can be interpreted as the guaranteed payoff of one currency

unit at time t = ZCB with maturity t.
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1. Term insurance.

• For t ≤ Ti one has iβ
γ
t = 1 iff (=if and only if) the i-th individual

has died in (t− 1, t] and for t < Ti that iβ
δ
t = 1 iff i is still alive

at t, but iβ
δ
Ti
≡ 0. Assume that i is alive at t = 0.

• Contract is a term insurance with fixed annual premiums id and

the benefit ic in the case of death.

• Note that t−1|1qx = EB[iβγ
t ] (t > 0) and tpx = EB[iβδ

t ]
(0 < t < Ti) for an individual of age x (cf. Section 2.4); for

convenience reasons, the notation −1|1qx = 0 and 0px = 1 is used.

• The hedge H∗ for iδt − iγt is for t < Ti given by the number of

(ic t−1|1qx − id tpx) ZCB with maturity t, and for t = Ti by
ic Ti−1|1qx ZCB with maturity Ti.
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2. Endowment.

• Assume for t < Ti that iβ
γ
t = 1 if and only if the i-th individual

has died in (t− 1, t], but iβ
γ
Ti

= 1 if and only if i has died in

(Ti − 1, Ti] or is still alive at Ti. Furthermore, iβ
δ
t = 1 if and only

if the i-th individual is still alive at t < Ti, but iβ
δ
Ti
≡ 0. Assume

that i is alive at t = 0.

• Contract is a endowment that features fixed annual premiums id

and the benefit ic in the case of death, but also the payoff ic

when i is alive at Ti.

• The hedge H∗ due to iδt − iγt is for t < Ti given by the number

of (ic t−1|1qx − id tpx) ZCB with maturity t, and for t = Ti by
ic (Ti−1|1qx + Ti

px) ZCB with maturity Ti.

All hedging can be done by zero-coupon bonds (matching).
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5.3 Historical pricing and valuation

• Consider the contracts from Subsection 5.2.

• Due to the Equivalence Principle (32), we demand

π0

(
Ti∑

t=0

ic iβ
γ

t e0/S0
t

)
= π0

(
Ti∑

t=0

id iβ
δ

te0/S0
t

)
. (51)

• (25) is applied for premium calculation, hence

id
ic

=
Ti∑

t=0

p(0, t) ·EB[iβ
γ

t ]
/ Ti∑

t=0

p(0, t) ·EB[iβ
δ

t ]. (52)

• (52) (minimum fair premium/benefit) depends on the ZCB prices

(or yield curve) at time 0, i.e. id/ic varies from day to day.
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• There is a yield curve given for any time t of the considered

historical time axis.

⇒ It is possible to compute the historical value of id/ic for t (the

date when the respective contract was signed) via (48) and (52).

• One obtains

id
ic

(t) =
Ti∑

τ=0

p(t, τ) τ−1|1qx(t)
/ Ti−1∑

τ=0

p(t, τ) τpx(t) (53)

for the term insurance and

id
ic

(t) =

(
p(t, Ti) Tipx(t) +

Ti∑
τ=0

p(t, τ) τ−1|1qx(t)

)/ Ti−1∑
τ=0

p(t, τ) τpx(t)

(54)

for the endowment (cf. Example 5.2).
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• Consider a man of age x = 30 years and the time axis

T = {0, 1, . . . , 10} (in years).

• In Figure 8, the rescaled quotients (53) and (54) are plotted for

the above setup.

• The absolute values at the starting point (September 1972) are
id/ic = 0.063792 for the endowment, respectively
id/ic = 0.001587 for the term insurance.

• The plot shows the dynamics of the quotients and hence of the

minimum fair premiums id if the benefit ic is assumed to be

constant.

• The premiums of the endowment seem to be much more subject

to the fluctuations of the interest rates than the premiums of the

term insurance.
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Count of months since September 1972
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Figure 8: Rescaled plot of the quotient id/ic (minimum fair annual pre-

mium/benefit) for the 10-years endowment (solid), resp. term insurance

(dashed), for a 30 year old man
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Count of months since September 1972
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Figure 9: Rescaled plot of the quotient id/ic (minimum fair annual pre-

mium/benefit) for the 25-years endowment (solid), resp. term insurance

(dashed), for a 30 year old man
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• Insurance companies do not determine the prices for products

daily. Financial risks can emerge as the contracts may be

over-valued.

• If one assumes a discrete technical (= first order) rate of interest

R′
tech, e.g. 0.035, one can compute technical quotients idtech/

ic by

computing the technical values of zero-coupon bonds, i.e.

ptech(t, τ) = (1 + R′
tech)

−τ , and plugging them into (53),

resp. (54).

• If a life insurance company charges the technical premiums idtech

instead of the minimum fair premiums id and if one uses the

valuation principle (25), the present value of the considered

insurance contract at time t is

iPV = (idtech − id) ·
Ti−1∑
τ=0

p(t, τ) τpx(t) (55)

due to the Principle of Equivalence, respectively (51).
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• In particular, this means that the insurance company can book the

gain or loss (55) in the mean (or limit) at time 0 as long as proper

risk management (as described in Section 5.2) takes place

afterwards.

• The present value (55) is a measure for the profit, or simply the

expected discounted profit of the considered contract if one

neglects all additional costs and the fact that in this specific

example first order mortality tables are used.
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Count of months since September 1972
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Figure 10: iPV /ic (present value/benefit) for the 10-years endowment

under a technical interest rate of 0.035 (solid) and 0.050 (dashed) for

a 30 year old man
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Count of months since September 1972
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Figure 11: iPV /ic (present value/benefit) for the 25-years endowment

under a technical interest rate of 0.035 (solid) and 0.050 (dashed) for

a 30 year old man
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Next two tables:

Selected (extreme) values due to different contracts for a 30 year old

man (fixed benefit: ic = 100, 000 Euros)
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Date 1974/07/31 1999/01/31

Term insurance: 10 years

Techn. premium idtech (R′
tech = 0.035) 168.94

Techn. premium idtech (R′
tech = 0.050) 165.45

Minimum fair annual premium id 152.46 168.11

Present value iV (R′
tech = 0.035) 108.90 7.17

Present value iV (R′
tech = 0.050) 85.84 -22.80

Endowment: 10 years

Techn. premium idtech (R′
tech = 0.035) 8,372.65

Techn. premium idtech (R′
tech = 0.050) 7,706.24

Minimum fair annual premium id 5,285.55 8,072.26

Present value iV (R′
tech = 0.035) 20,398.70 2,578.55

Present value iV (R′
tech = 0.050) 15,995.27 -3,141.95
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Date 1974/07/31 1999/01/31

Term insurance: 25 years

Techn. premium idtech (R′
tech = 0.035) 328.02

Techn. premium idtech (R′
tech = 0.050) 303.27

Minimum fair annual premium id 216.37 303.90

Present value iV (R′
tech = 0.035) 1,009.56 376.84

Present value iV (R′
tech = 0.050) 785.80 -9.83

Endowment: 25 years

Techn. premium idtech (R′
tech = 0.035) 2,760.85

Techn. premium idtech (R′
tech = 0.050) 2,255.93

Minimum fair annual premium id 808.39 2,177.32

Present value iV (R′
tech = 0.035) 17,655.42 9,118.39

Present value iV (R′
tech = 0.050) 13,089.53 1,228.34
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5.4 Unit-linked pure endowment with guarantee

• LI-contract for i given by (iγt)t∈T = (iCte1)t∈T and

(iδt)t∈T = (
iDt

S0
t

e0)t∈T with T = {0, 1, . . . , T} in years.

• Assume for t < Ti that iβ
γ
t = 0 and iβ

γ
Ti

= 1 if and only if i is

still alive at Ti. Furthermore, iβ
δ
t = 1 if and only if the i-th

individual is still alive at t < Ti, but iβ
δ
Ti
≡ 0.

• Let iDt be as in Section 5.2 on page 88.

• Let E be the non-random number of shares of type 1 and G > 0
be the guaranteed minimum payoff which are paid if i is alive at

Ti.

⇒ icTi = max{G/S1
Ti

, E} and iCTi = icTi
iβ

γ
Ti



5 EXAMPLES 104

• The contract is a unit-linked pure endowment with guarantee

that features fixed annual premiums id and the benefit icTiS
1
Ti

when i is alive at Ti.

• The hedge H∗ due to iδt − iγt is for t < Ti given by the number

of −id tpx ZCB with maturity t, and for t = Ti by Ti
pxG ZCB

and Ti
pxE European Calls with underlying S1, strike price

K = G/E and maturity Ti.



5 EXAMPLES 105

5.5 Premium and reserve with CRR (spreadsheet)

www.mathematik.tu-darmstadt.de/˜tfischer/
Unit-linkedPureEndowment+Guarantee.xls

• For the numeric example we use the Cox-Ross-Rubinstein model

as in Section 3.8, but here with T = {0, 1, . . . , 10} in years.

• Understand the computation of the minimum fair premium.

• With E = 1000 and G = 140000.00 we obtain id = 12257.38 as

minimum fair premium.

• What is a reasonable definition for the reserve in the modern

framework? (Cf. Equation (16))

• Try to understand the computation of the reserve Ra. What is the

premium part of the reserve?

• Explain why recursion formula (18) cannot be used here.
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6 Conclusion
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• Reasonable brief system of axioms for modern life insurance exists

• Adaption of classical convergence-idea (SLLN) possible

• Minimum fair price uniquely determined by axioms

• Modern valuation and hedging crucial for real companies

• Classical life insurance mathematics a special case of the modern

approach
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7 Appendix
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7.1 Stochastic independence and product spaces

• Independence of random variables X, Y means that they don’t

influence each other.

• Precise: If X, Y are real-valued on (B,B, B), then X and Y are

stochastically independent if and only if for each pair of Borel

sets A1, A2 ⊂ R

B(X ∈ A1 and Y ∈ A2) = B(X ∈ A1) · B(X ∈ A1). (56)

• ’Real-world’ example: Two coins, X and Y can have the states

0 (the one side) or 1 (the other side) with probability 1
2 . Clearly,

B(X = 0, Y = 0) = 1
4 .

• Construction of independent random variables by product spaces.
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• Given two probability spaces (B1,B1, B1) and (B2,B2, B2), there

exists a (uniquely determined) probability space

(B1 ×B2,B1 ⊗ B2, B1 ⊗ B2) (57)

which distributes to all events of form A1 ×A2 with A1 ∈ B1 and

A2 ∈ B2 the probability

B1 ⊗ B2(A1 ×A2) = B1(A1) · B2(A2). (58)

• When X is defined on (B1,B1, B1) and Y on (B2,B2, B2), then

these random variables are independent on the common space

(57) (where X(b1, b2) := X(b1) and Y (b1, b2) := Y (b2)).

• ’Real-world’ example: The two coins! Here, Bi = {0, 1},
B1 ×B2 = {(0, 0), (1, 0), (0, 1), (1, 1)}, X and Y defined as Id.

A1 = {0}, A2 = {0} reflects the independence example above.

• A generalization to infinite products is possible.
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7.2 A corollary of Fubini’s Theorem

COROLLARY 7.1. Consider two probability spaces (F,F , F) and

(B,B, B) and a F⊗ B-integrable real-valued random variable X on

F ×B. Then

EF⊗B[X] = EF[EB[X]] = EB[EF[X]]. (59)

• The order of integration can be chosen arbitrarily.

• In particular, EF[X] (resp. EB[X]) exists B-a.s. (resp. F-a.s.).
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7.3 The Strong Law of Large Numbers

• Recall that on a probability space (Ω,A, P) almost surely (a.s.)

means on a set with measure/probability 1.

• A sequence of real valued random variables (Xn)n∈N is said to

fulfill the Strong Law of Large Numbers whenever

1
n

n∑
i=1

(Xi −E[Xi])
n→∞−→ 0 a.s. (60)

• Two important results on the Strong Law of Large Numbers by

Kolmogorov
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THEOREM 7.2 (Kolmogorov/Etemadi). Any sequence of real

valued, integrable, identically distributed and pairwise independent

random variables (Xn)n∈N fulfills the Strong Law of Large Numbers.

“Real-world example”: Fair gambling dice with numbers from 1 to

6. The arithmetic mean of the results will always converge to 3.5.

THEOREM 7.3 (Kolmogorov’s Criterion). Any sequence of real

valued, integrable and independent random variables (Xn)n∈N with

∞∑
i=1

1
n2

V ar(Xi) < ∞ (61)

fulfills the Strong Law of Large Numbers.

“Real-world example”: Life insurance! (see Section 1.3.1)
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7.4 Conditional expectations and martingales

• Let Y be a BT -measurable integrable random variable on the

filtered probability space (B, (Bt)t∈T, B)

• Z = E[Y |Bt], the conditional expectation of Y given Bt, is the

a.s.-uniquely determined Bt-measurable random variable, such that∫
C

ZdB =
∫

C

Y dB ∀C ∈ Bt (62)

i.e. Z is the “smoothing” of Y with respect to Bt

• Special cases

1. E[Y |B0] = E[Y ] a.s.

2. E[Y |BT ] = Y a.s.
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• When C is a minimal element of Bt, i.e. when it contains no other

element of Bt, and B(C) > 0, then

E[Y |Bt](b) = E[Y |C] :=
1

B(C)

∫
C

Y dB (63)

for any b ∈ C.

• Some rules of calculus

1. E[E[Y |Bt]|Bs] = E[Y |Bs] a.s. for s < t

2. E[XY |Bt]| = X ·E[Y |Bt] a.s. if X Bt-measurable and XY

integrable

3. E[aX + bY |Bt] = aE[X|Bt] + bE[Y |Bt]
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EXAMPLE 7.4 (Conditional expectations).

• You have to pass two exams (t = 1, 2) to get the maths diploma.

• Your auntie gives you 1 EUR when you get the diploma (r.v. X).

• The expected value of the gift (i.e. of X) conditioned on the

information given at time t is E[X|Bt]. Here,

B = {pp, pf, ff}
B0 = {∅, B}, B1 = {∅, {pp, pf}, {ff}, B}, B2 = P(B) =
{∅, {pp}, {pf}, {ff}, {pp, pf}, {pf, ff}, {pp, ff}, B}

t = 0 1 2

you 0.9

0.1
UUUUU

UUUU
passed

0.9

0.1
VVVV

VVVV
passed

failed failed

Figure 12: The situation with probabilities
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Example 7.4 (continued)

• E[X|B0] = E[X] = 0.81

• E[X|B1]({pp, pf}) = E[X|B1](p∗) = 0.9 and E[X|B1](f∗) = 0

• E[X|B2](pp) = 1 and E[X|B2]({pf, ff}) = E[X|B1](∗f) = 0,

i.e. E[X|B2] = X

• Observe: E[X|B1](passed/failed at 1) is exactly the expectation

of X you would compute at 1 and in this state. This is the

meaning of (63).

t = 0 1 2

0.81
0.9

0.1
XXXXX

XXXXXXX
0.9

0.9

0.1
WWWWW

WWWWWW
1

0 0

Figure 13: (Expected) Value process of your aunties gift
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• An adapted stochastic process (with respect to the filtration

(Bt)t∈T) is a vector X = (Xt)t∈T of Bt-measurable random

variables Xt.

• A martingale is an adapted stochastic process X = (Xt)t∈T such

that for s ≤ t

E[Xt|Bs] = Xs a.s. (s, t ∈ T). (64)

• Example: (E[Y |Bt])t∈T is a martingale (Y BT -measurable).
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[20] Laplace, P.S. (1951) - A Philosophical Essay on Probabilities,

Dover Publications, New York

[21] Loebus, N. (1994) - Bestimmung einer angemessenen Sterbetafel

für Lebensversicherungen mit Todesfallcharakter, Blätter der

DGVM, Bd. XXI



REFERENCES 123

[22] Møller, T. (1998) - Risk-minimizing hedging strategies for

unit-linked life insurance contracts, ASTIN Bulletin 28, 17-47

[23] Møller, T. (2001) - Risk-minimizing hedging strategies for

insurance payment processes, Finance and Stochastics 5, 419-446

[24] Møller, T. (2002) - On valuation and risk management at the

interface of insurance and finance, British Actuarial Journal 8 (4),

787-828.

[25] Møller, T. (2003a) - Indifference pricing of insurance contracts in

a product space model, Finance and Stochastics 7 (2), 197-217

[26] Møller, T. (2003b) - Indifference pricing of insurance contracts in

a product space model: applications, Insurance: Mathematics and

Economics 32 (2), 295-315

[27] Norberg, R. (1999) - A theory of bonus in life insurance, Finance

and Stochastics 3 (4), 373-390



REFERENCES 124

[28] Norberg, R. (2001) - On bonus and bonus prognoses in life

insurance, Scandinavian Actuarial Journal 2001 (2), 126-147

[29] Persson, S.-A. (1998) - Stochastic Interest Rate in Life Insurance:

The Principle of Equivalence Revisited, Scandinavian Actuarial

Journal 1998 (2), 97-112

[30] Rudin, W. (1987) - Real and complex analysis, Third Edition,

McGraw-Hill

[31] Schich, S.T. (1997) - Schätzung der deutschen Zinsstrukturkurve,

Diskussionspapier 4/97, Volkswirtschaftliche Forschungsgruppe

der Deutschen Bundesbank
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