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1. PARAMETRIC EQUATIONS

Consider the non-parametric equation: Solve

F.x/ := x2
− 2x− 1 = 0

with solutionsx1;2 = 1±
√

2.
The parametric version is: Fort ∈ R find
a solutionx = x.t/ of

(1) F.x; t/ := x2
− 2t2x− t4 = 0

The solutions are

x1;2.t/ = t2 ±
√

2t2 = t2.1±
√

2/

Ex.1Sketch the solution curve in the.x; t/-
space.

At t = 0 with solutionx = 0 we find for
the gradient ofF

∇F.x; t/ =

(
2x− 2t2

−4tx− 4t3

)
x;t

=

(
0
0

)
:
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Rule.The solution set ofF.x; t/= 0 where
F : R2

→ R is “normally” (locally) given
by aone-dimensionalsolution curve.x.t/; t/.
However at points.x; t/where∇F.x; t/=

0 holds the solution set has asingular-
ity (such as a bifurcation or a nonsmooth-
ness).

Two versions of the Implicit Function
Theorem
We consider systems ofn + p equations
in n variables:

F.x; t/= 0 where F : Rn
×Rp

→ Rn:

The Implicit Function Theorem (IFT) makes
a statement on the structure of the solu-
tion set in the “normal” situation.
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Theorem 1.(IFT for one equation)
Let F : Rk

→ R be a C1-function. Sup-
pose fory ∈ Rk we have F.y/ = 0 and
∇F.y/ 6= 0. Then neary the solution set
S.F/ := {y ∈ Rk

| F.y/ = 0} is a C1-
manifold of dimension k− 1. Moreover
at y

∇F.y/ ⊥ S.F/

and the gradient∇F.y/ points into the
region where F.y/ > F.y/.

Ex.2Give a geometrical sketch of the state-
ment.
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Theorem 2.(General version of the IFT)
Let F : Rn

× Rp
→ Rn be a C1-function

F.x; t/ with .x; t/ ∈ Rn
× Rp. Suppose

for .x; t/ ∈ Rn
× Rp we have F.x; t/ = 0

and the matrix∇xF.x; t/ is nonsingular.
Then in a neighborhood Ut.t/ of t the so-
lution set S.F/ := {.x; t/ | F.x; t/ = 0} is
described by a C1-function x: Ut.t/ → R
such that x.t/ = x and

F.x.t/; t/ = 0 for t ∈ Ut.t/ :

(So, locally, S.F/ is a p dimensional C1-
manifold.) Moreover the gradient∇x.t/
is given by (t∈ Ut.t/)

∇x.t/= −[∇xF.x.t/; t/]−1
∇tF.x.t/; t/ :

Proof. Seee.g., [7]. Note that if x.t/
is aC1-function satisfyingF.x.t/; t/ = 0
then by differentiation wrt.t we find

∇xF.x.t/; t/∇x+ ∇tF.x.t/; t/ = 0 :
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2. PARAMETRIC UNCONSTRAINED

OPTIMIZATION

2.1. Non-parametric minimization. We
assume thatf : Rn

→ R is aC2-function.
The pointx ∈ Rn is a local minimizerof
f if there is some" > 0 such that

f .x/ ≤ f .x/ ∀x; ‖x− x‖ < " :

It is called astrict local minimizer if:
f .x/ < f .x/ ∀x 6= x, ‖x− x‖ < ".

Theorem 3.(Necessary and sufficient op-
timality conditions) (seee.g., [4])
(a) If x is a local minimizer of f then

∇ f .x/= 0 and ∇
2 f .x/≥ 0 (pos. semidef.)

(b) If x satisfies

∇ f .x/= 0 and ∇
2 f .x/ > 0 (pos. definite)

thenx is a strict local minimizer of f .
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2.2. Parametric minimization. Let f .x; t/
be aC2 function, f : Rn

× T → R, where
T ⊂ Rp is open. We consider thepara-
metric problem: for t ∈ T find a (local)
solutionx = x.t/ of

(2) P.t/ : min
x∈Rn

f .x; t/

To solve this problem, fort ∈ T, we have
to find solutionsx of thecritical point equa-
tion

(3) F.x; t/ := ∇x f .x; t/ = 0 :

The next examples show the possible bad
behavior.

Ex.3 For

P.t/ : min f .x; t/ :=
1
3

x3
− t2x

the minimizer is given byx.t/ = |t| with
minimal valuev.t/ := f .x.t/; t/= −

2
3|t|

3.
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Ex.4 For

P.t/ : min f .x; t/ :=
1
3

x3
− t2x2

− t4x

the critical points are given by the curves
x1;2.t/ = t2.1 ±

√
2/ and the minimizer

by x1.t/.

Rule. The following appears:

• The value functionv.t/ = f .x.t/; t/
may behave “smoother” than the min-
imizer functionx.t/.

• A singular behavior appears at solu-
tion points.x; t/ of ∇x f .x; t/= 0 where
the matrix∇2

x f .x; t/ is singular.

Ex.5 Check the singular behavior for the
examples Ex.3 and Ex.4.

The next theorem describes the situation
near a non-singular solution.x; t/ of (3).
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Theorem 4.(local stability result) Letx
be a solution of P.t/, t ∈ T, such that

∇x f .x; t/= 0 and ∇
2
x f .x; t/ > 0 (pos. def.).

Then in a neighborhood Ut.t/ there is a
C1-function x: Ut.t/→ Rn such that x.t/=

x and for any t∈ Ut.t/, x.t/ is a strict
local minimizer of P.t/. Moreover for
t ∈ Ut.t/,

∇x.t/= −[∇2
x f .x.t/; t/]−1

∇
2
xt f .x.t/; t/ ;

and the value functionv.t/ := f .x.t/; t/
is a C2-function with

∇v.t/ = ∇t f .x.t/; t/

and

∇
2v.t/= ∇

2
tx f .x.t/; t/∇x.t/+∇

2
t f .x.t/; t/ :

Proof. Apply the IFT to the equation
∇x f .x; t/ = 0.

Rem. Note thatx.t/ is C1 but v.t/ is C2.
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3. PARAMETRIC CONSTRAINT

OPTIMIZATION

3.1. Non-parametric programs. Consider
nonlinear programs:
(4)
P : min

x∈Rn
f .x/ s.t. x∈ F := {x | g j.x/≤ 0; j ∈ J}

with index setJ = {1; : : : ;m}. The setF
is calledfeasible set.

Def. A point x ∈ F is called local mini-
mizer of orders = 1 or s = 2 if there are
constantsc; " > 0 such that

f .x/− f .x/≥ c‖x− x‖s
∀x∈ F ;‖x− x‖< " :

It is a global minimizer if f .x/ ≥ f .x/
holds∀x ∈ F .

For x ∈ F we introduce theactive index
set

J0.x/ = { j ∈ J | g j.x/ = 0}
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and theLagrangian function

L.x; �/ = f .x/+

∑
j∈J0.x/

� jg j.x/ :

The coefficients� j are calledLagrangian
multipliers. We say that theLinear Inde-
pendence constraint qualification(LICQ)
is satisfied atx ∈ F if

∇g j.x/; j ∈ J0.x/; are linearly independent:

The next theorem gives the famousKarush-
Kuhn-Tucker(KKT) sufficient optimality
conditions.
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Theorem 5.(Sufficient optimality condi-
tions)
Let x ∈ F satisfy LICQ.

(a) (Order one) Let with multipliers� j
the KKT condition
(5)
∇xL.x; �/= ∇ f .x/+

∑
j∈J0.x/

� j∇g j.x/= 0 ;

� j ≥ 0; j ∈ J0.x/, be satisfied such that

� j > 0; ∀ j ∈ J0.x/ (Strict complement. (SC))

and |J0.x/| = n. Thenx is a local mini-
mizer of (P) of order s= 1.
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(b) (Order two) Let with multipliers� j
the KKT condition (5) be satisfied such
that (SC) holds and thesecond order con-
dition (SOC)

SOC: dT
∇

2
xL.x; �/d> 0 ∀d ∈ Tx\ {0}

where Tx is the tangentspace
Tx = {d | ∇g j.x/d = 0; j ∈ J0.x/}. Then
x is a local minim. of (P) of order s= 2.

Ex.6Show that the pointx = 0 is the min-
imizer of orders= 1 of the problem

minx2 s.t. e−x1 − x2−1≤ 0; x1− x2 ≤ 0

Rem. The KKT conditions can also be
given in the equivalent (global) form:

∇ f .x/+

∑
j∈J

� j∇g j.x/ = 0(6)

� j · g j.x/ = 0; j ∈ J
� j ; −g j.x/ ≥ 0; j ∈ J :
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3.2. Parametric programs. We consider
nonlinear parametric programsof the form:
Let T ⊂ Rp be some open set. Fort ∈ T
find local minimizersx = x.t/ of

(7) P.t/ : min
x∈Rn

f .x; t/ s.t. x ∈ F .t/ ;

where

F .t/ := {x | g j.x; t/ ≤ 0 ; j ∈ J} :

For t ∈ T and feasiblex ∈ F .t/ we de-
note by J0.x; t/ the active index set and
by L.x; t; �/ the Lagrangian function

L.x; t; �/= f .x; t/+
∑

j∈J0.x;t/

� jg j.x; t/ :

To find (near.x; t/) local minimizersx of
P.t/ we are looking for solutions.x; t; �/
of the KKT-equations (with� j ≥ 0)
(8)

F.x; t; �/ :=
∇xL.x; t; �/ = 0

g j.x; t/ = 0 ; j ∈ J0.x; t/ :
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From the sufficient optimality conditions
in Theorem 5 we obtain

Theorem 6.(Local stability result) Letx∈

F .t/. Suppose that with multipliers� j
the KKT condition∇xL.x; t; �/= 0 is sat-
isfied such that

(1) LICQ holds atx wrt. F .t/.
(2)� j > 0; ∀ j ∈ J0.x; t/ (SC)

and either

(3a)(order one)|J0.x; t/| = n

or

(3b)(order two)

dT
∇

2
xL.x; t; �/d > 0 ∀d ∈ Tx;t \ {0}

where Tx;t is the tangentspace Tx =

{d | ∇xg j.x; t/d = 0; j ∈ J0.x; t/}.

(According to Theorem 5,x is a local min-
imizer of P.t/ of order s= 1 in case (3a)
and of order s= 2 in case (3b)).
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Then there exist a neighborhood Ut.t/ of
t and C1-functions x: Ut.t/ → Rn, � :
Ut.t/→ R|J0.x;t/| such that x.t/= x,�.t/=

� and for any t∈ Ut.t/ the point x.t/ is
a strict local minimizer of P.t/ with cor-
responding multiplier�.t/. Moreover for
t ∈ Ut.t/ the derivatives of x.t/; �.t/ and
the value functionv.t/ = f .x.t/; t/ are
given by(

∇x.t/
∇�.t/

)
= −[∇x;�F.x.t/; t; �.t//]−1F.x.t/; t; �.t//

and

∇v.t/ = ∇tL.x.t/; t; �.t// :
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Ex.7 Let A ∈ Rn×n be a symmetric ma-
trix and B ∈ Rn×m (n ≥ m). Suppose the
matrix B has full rankm and the follow-
ing holds:

dT Ad 6= 0 ∀d ∈ Rn such thatBTd = 0 :

Show that then the following matrix is reg-
ular: (

A B
BT 0

)
Rem. Many further (often difficult) re-
sults are dealing with the generalization
of this stability result under weaker as-
sumptions (i.e., LICQ or SC does not hold;
seee.g., [2], [3]).
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4. LINEAR PARAMETRIC PROGRAMS

4.1. Non-parametric linear programs.
Let be given a matrixA ∈ Rm×n with m
rowsaT

j ; j ∈ J := {1; : : : ;m} and vectors
b∈ Rm, c∈ Rn. We considerprimalprob-
lems of the form

(9) P : max cTx s.t. x ∈ FP

FP = {x | aT
j x ≤ b j; j ∈ J} :

We often write the feasible set in compact
form F = {x | Ax≤ b}. The problem

(10) D : min bTy s.t. y ∈ FD

FD = {y |

m∑
j=1

y ja j = c; y ≥ 0}

is called the dual problem. A vectorx ∈

FP is called feasible forP and a vectory
satisfying the feasibility conditionsATy=

c; y ≥ 0 is called feasible forD. Let vP,
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vD resp. denote the maximum value ofP
resp. minimum value ofD.

Lemma 1. (weak duality) Let x be fea-
sible for P and y be feasible for D. Then

cTx ≤ bTy and thus vP ≤ vD :

If cTx = bTy holds then x is a maximizer
of P and y a minimizer of D.

Proof. As Ex.

For x ∈ FP as usual we define the active
index setJ0.x/ = { j | aT

j x = b j}. For a
subsetJ0 ⊂ J we denote byAJ0 the sub-
matrix of A with rowsaT

j ; j ∈ J0 and for
y ∈ Rm by yJ0 the vector.y j; j ∈ J0/.

Def. A feasible pointx ∈ FP is called a
vertex of the polyhedronFP if the vectors

a j; j ∈ J0.x/ form a basis ofRn

or equivalently ifAJ0.x/ has rankn. (This
implies|J0.x/| ≥ n.
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The vertexx is callednondegenerateif
LICQ holds, i.e., a j; j ∈ J0.x/ are lin-
ear independent (implying|J0.x/| = n or
equivalentlyAJ0.x/ is non-singular).

Theorem 7.
(a) (Existence and strong duality) If both
P and D are feasible then there exist so-
lutions x of P andy of D. Moreover for
(any of) these solutions we have

cTx = bTy and thus vP = vD :

(b) (Optimality conditions) A pointx ∈

FP is a solution of P if and only if there
is a correspondingy ∈ FD such that the
complementarity conditions

yT.b− Ax/= 0 or y j.b j −aT
j x/= 0;∀ j ∈ J
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hold or equivalently if there existsy j; j ∈

J0.x/, such that KKT conditions are sat-
isfied:∑

j∈J0.x/

y ja j = c; y j ≥ 0; j ∈ J0.x/ :

It appears that normally the solution ofP
arises at a vertex ofFP.

Lemma 2.If the polyhedronFP has a ver-
tex (at least one) andvP < ∞ then the
max valuevP of P is also attained at some
vertex ofFP.

Rem. The Simplex algorithm for solv-
ing P proceeds from vertex to vertex of
FP until the optimality conditions in The-
orem 7(b) are met.
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4.2. Parametric linear programs. In a
parametric LP we have given aC2-matrix
function A.t/ : Rp

→ Rm×n with m rows
aT

j .t/; j ∈ J := {1; : : : ;m} andC2 vector
functionsb.t/ : Rp

→ Rm, c.t/ : Rp
→

Rn and the open parameter setT ⊂ Rp:
For anyt ∈ T we wish to solve the primal
program

(11) P.t/ : max cT.t/x s.t. x ∈ FP.t/

FP.t/ = {x | A.t/x ≤ b.t/}
The corresponding dual reads

(12) D.t/ : min bT.t/y s.t. y ∈ FD

FD = {y | AT.t/y = c.t/; y ≥ 0} :

For t ∈ T andx ∈ FP.t/ the active index
set isJ0.x; t/.
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Linear Production Model, Shadow Prices
Assume a factory producesn different prod-
uctsP1; : : : ; Pn. The production relies on
material coming frommdifferent resources
R1; : : : ; Rm in such a way that the pro-
duction of 1 unit of a productPj requires
ai j units of resourceRi, for i = 1; : : : ;m.

Suppose we can sell our production for
the price ofc j per 1 unit ofPj and thatbi
units of each resourceRi are available for
the total production. How many unitsx j
of each productPj should we produce in
order to maximize the total receipt from
the sales?

An optimal production plan̄x= .x̄1; : : : ; x̄n/
T

corresponds to an optimal solution of the
linear program
(13)
P : max cTx s.t. Ax≤ b; x ≥ 0 :
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HereA = .ai j / is the matrix with the ele-
mentsai j . Let x be a solution with corre-
sponding solutiony of the dual problem
(14)
D : min bTy s.t. ATy ≥ c; y ≥ 0 :

and maximum profit̄z = cTx = bTy.
Could we possibly increase the profit by

spending money on increasing the resource
capacityb and adjusting the production
plan? If so, how much would we be will-
ing to pay for 1 more unit of resourceRi?
Let us increase (for fixedi) the capacity

of Ri from bi to b′
i = bi + t, ȳ is still feasi-

ble. So weak duality gives the following
upper bound on the expected profit:

z′ ≤ b1ȳ1 + : : :+ b′
i ȳi + : : :+ bmȳm

= t · ȳi +

m∑
s=1

bsȳs = t · ȳi + z̄ :
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Accordingly, we would not want to pay
more thant · ȳi for t more units ofRi. In
this sense, the coefficients̄yi of the dual
optimal solutionȳ can be interpreted as
theshadow pricesof the resourcesRi.
Note that for the value functionv.t/ in

dependence from the parametert we find
v.t/− v.0/

t
=

z′ − z
t

≤ yi :

REMARK. The notion of shadow prices
furnishes also an intuitive interpretation
of complementary slackness. If the slack
s̄i = bi −

∑n
j=1ai j x̄ j is strictly positive

at the optimal production̄x, we do not use
resourceRi to its full capacity. Therefore,
we would expect no gain from an increase
of Ri ’s capacity.
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General case.We come back to the gen-
eral parametric LP in (11). Suppose for
t ∈ T the pointx ∈ FP.x/ is a vertex solu-
tion of P.t/. To find for t neart solutions
x.t/ of P.t/ we have to find feasible solu-
tions x and y of the system of optimality
conditions:

(15) P : AJ0.x;t/
x = bJ0.x;t/

and
(16)
D : AT

J0.x;t/
yJ0.x;t/

= cJ0.x;t/
; yJ0.x;t/

≥ 0

If x is a non-degenerate vertex,i.e., AJ0.x;t/
is nonsingular, this is possible by apply-
ing the IFT to these systems.

Theorem 8.(Local stability result) Letx∈

FP.t/ be a vertex solution of P.t/ with
corresponding dual solutionyJ0.x;t/

such
that



28

(1) x is a nondegenerate vertex,i.e., LICQ
holds.

(2) y j > 0; ∀ j ∈ J0.x; t/ (SC)
(According to Theorem 5x is a local min-
imizer of P.t/ of order s= 1.) Then there
exist a neighborhood Ut.t/ and C1-functions
x : Ut.t/→ Rn, yJ0.x;t/

: Ut.t/→ R|J0.x;t/|

such that x.t/ = x, yJ0.x;t/
.t/ = yJ0.x;t/

and for any t∈ Ut.t/ the point x.t/ is a
vertex solution of P.t/ (of order s=1) with
corresponding multiplier yJ0.x;t/

.t/. More-
over for t∈ Ut.t/ the derivatives of x.t/
and the value functionv.t/ = cT.t/x.t/
are given by

∇x.t/= [ AJ0.x;t/
.t/]−1

(
∇bJ0.x;t/

.t/− ∇AJ0.x;t/
.t/x

)
and
∇v.t/ = [∇cJ0.x;t/

.t/]Tx

+[yJ0.x;t/
.t/]T[∇bJ0.x;t/

.t/−∇AT
J0.x;t/

.t/x]
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Rem. The production model case above
is a special case whereA; c do not de-
pend ont ∈ R (so p = 1) and (for fixed
i ∈ J0.x; t/) 1

dtbJ0.x;t/
.t/ = ei (ei is the

ith unit vector inR|J0.x;t/|) the so that
1
dt
v.t/ = [yJ0.x;t/

.t/]Tei = yi :
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5. APPLICATIONS

5.1. Interior point methods. The basic
idea of the interior point method for solv-
ing a non-parametric program

P : min
x∈Rn

f .x/ s.t. g j.x/≤ 0; j ∈ J

is simply as follows. Consider the per-
turbed KKT system
(17)

F.x; �; �/ :=

∇ f .x/+
∑
j∈J

� j∇g j.x/ = 0

−� j · g j.x/ = �; j ∈ J ;

� j ; −g j.x/ ≥ 0; j ∈ J :

where� > 0 is a perturbation parameter.
The idea is to find solutionsx.�/ and� j.�/

of this system (satisfying−g j.x.�//; � j.�/ >

0) and to let� ↓ 0. We expect thatx.�/
converges to a solutionx of P.
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Under the sufficient optimality conditions
this procedure is well-defined (at least for
small�).

Theorem 9.Let x be a local minimizer of
P such that the sufficient optimality con-
ditions of Theorem 5 are fulfilled with mul-
tiplier � so that� j > 0 holds for all j ∈
J0.x/. Then there exists C1-functions x:
.−�; �/ → Rn, � j : .−�; �/ → R; j ∈

J0.x/ (� > 0) such that x.0/= x; � j.0/=

� j, and x.�/; � j.�/ are locally unique
solutions of (17)

Proof. Follows by applying the IFT to the
equation (17). 2
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5.2. A parametric location problem. We
consider a concrete location problem in
Germany (see [6] for details). Suppose
some good is produced at 5 existing plants
at locationsj

= .sj
1; sj

2/, j = 1; ::;5 (sj
1

longitude,sj
2 latitude in Germany) and a

sixth new plant has to be build at loca-
tion t = .t1; t2/ (to be determined) to sat-
isfy the demands ofVi units of goods in
99 townsi at location`i

= .`i
1; `

i
2/, i =

1; : : : ;99. Suppose (for simplicity) that
the transportation costci j from plant j to
town i (per unit of the good) is (propor-
tionally to) the Euclidian distance

ci j =

√
.sj

1 − `i
1/

2 + .sj
2 − `i

2/
2; j = 1; ::;5;

ci6.t/ =

√
.t1 − `i

1/
2 + .t2 − `i

2/
2; ∀i:

Suppose further that the total demandV =∑
i Vi will be produced in the 6 plants with
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a production ofp j units of the good in
plant j where

p1 = V
10
100

; p2 = V
30
100

; p3 = V
10
100

;

p4 = V
15
100

; = p5 = V
15
100

; p6 = V
20
100

:

The problem now is to find the location
t = .t1; t2/ of the new plant such that the
total transportation costs are minimized.
For any fixed locationt the optimal trans-
portation strategy is given by the solution
of the transportation problem (standard LP),

P.t/ : := min
yi j

5∑
j=1

∑
i

ci j yi j +

∑
i

ci6.t/yi6 s.t.∑
i

yi j = p j; j = 1; ::;6 ;∑
j

yi j = Vi; i = 1; ::;99 :
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Hereyi j is the number of units of the good
to be transported from plantj to town i.
The problem is now to find a (global or
local) minimizer ofv.t/. Most local mini-
mization algorithm are based on the com-
putation of the (negative) gradient of the
objective function at some actual pointt =

tk, d = −∇v.tk/.
Suppose thatyk

i j is the vertex solution of

P.tk/. Then by the results of Section 4.2
the gradient can be computed via the for-
mula

∇v.tk/ = ∇tL.y
k; tk; �k/ =

99∑
i=1

yk
i6

1√
.t1 − `i

1/
2 + .t2 − `i

2/
2

(
.t1 − `i

1/

.t2 − `i
2/

)
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6. PATHFOLLOWING IN PRACTICE

We shortly discuss how a solution curve
.x.t/; t/ of a one-parametric equation

F.x; t/= 0 F : Rn
×R → Rn; t ∈ R;

can be followed numerically.
The basic idea is to use some sort of New-

ton procedure. Recall that the classical
Newton method is the most fundamental
approach for solving a system ofn equa-
tions inn unknowns:

F.x/ = 0 F : Rn
→ Rn :

The famous Newton iteration for comput-
ing a solution is to start with some (ap-
propriate) starting pointx0 and to iterate
according to

xk+1
= xk

− [∇F.xk/]−1F.xk/; k = 0;1; :::

It is well-known that this iteration con-
verges quadratically to a solutionx of F.x/=

0 if
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• x0 is chosen close enough tox and if
• ∇F.x/ is a non-singular matrix.

The simplest way to follow approximately
a solution curvex.t/ of F.x; t/ = 0, i.e.,
F.x.t/; t/ = 0, on an intervalt ∈ [a;b] is
to discretize [a;b] by

t` = a+ `
b− a

N
; ` = 0; : : : ; N

(for someN ∈ N) and to compute for any
` = 0; : : : ; N, a solutionx` = x.t`/ of
F.x; t`/ = 0 by a Newton iteration,

xk+1
`

= xk
`− [∇F.xk

`; t`/]
−1F.xk

`; t`/; k = 0;1; :::

starting withx0
`

= x`−1 (for ` ≥ 1).
We refer the reader to the book [1] for

detailse.g., on:
• How to perform pathfollowing efficiently?
• How to deal with branching points.x; t/

where different solution curves inter-
sect?
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7. GENERAL PARAMETRIC

PROGRAMMING

In the next sections we analyze the para-
metric behavior under weaker assumptions
where the Implicit Function Theorem is
no more applicable. We try to keep the
introduction of ’new’ concepts to a mini-
mum and to motivate the results by exam-
ples.

Consider again the parametric optimiza-
tion problem

(18) P.t/ : min
x∈Rn

f .x; t/ s.t. x ∈ F.t/

F.t/ := {x ∈ Rn
| g j.x; t/ ≤ 0; j ∈ J} ;

depending on the parametert ∈ T, where
T ⊂ Rp is an open parameter set. Again
J := {1; : : : ;m}. All functions f; g j are
assumed to be (at least) continuous every-
where.
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Notation: Let v.t/ = minx∈F .t/ f .x; t/
denote the minimal value ofP.t/ (v.t/ =

∞ if F.t/ = ∅) and let S.t/ the set of
(global) minimizers. The mappingsF :
T ⇒ Rn andS: T ⇒ Rn are so-called set-
valued mappings.

Problem of parametric optimization: How
do the value functionv.t/ and the map-
pingsF.t/, S.t/ change witht. (Continu-
ously, smoothly?)

Definition 1. Let v : T → R∞ be given,
R∞ = R ∪ {−∞;∞}.
(a) The functionv is calledupper semi-
continuous(usc) att ∈ T if for any " > 0
there exists� > 0 such that

v.t/ ≤ v.t/+ " for all ‖t − t‖ < � :

(b) The functionv is called lower semi-
continuous(lsc) att ∈ T if for any " > 0
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there exists� > 0 such that

v.t/ ≥ v.t/− " for all ‖t − t‖ < � :

We shall see that the lower- and upper
semicontinuity of the value functionv.t/
depend on different assumptions. Obvi-
ously to assure the lower semicontinuity
of v at t the feasible setF.t/ should not
become essentially larger by a small per-
turbation t of t and to assure the upper
semicontinuity ofv the setF.t/ should
not become essentially smaller after a per-
turbation. To avoid an ’explosion’ ofF.t/
we will need some compactness assump-
tions for F.t/ and to prevent an ’implo-
sion’ a Constraint Qualification will be needed.
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Definition 2. Let the set valued mapping
F : T ⇒ Rn be given.

(a) F is calledclosedat t ∈ T if for any
sequencestl ; xl , l ∈ N, with tl → t; xl ∈

F.tl / the conditionxl → x implies x ∈

F.t/.

(b) (no explosion of F.t/ after perturba-
tion of t = t) F is calledouter semicon-
tinuous(osc) att ∈ T if for any sequences
tl ; xl , l ∈ N with tl → t; xl ∈ F.tl / there
existsxl ∈ F.t/ such that‖xl − xl‖ → 0
for l → ∞.

(c) (no implosion of F.t/ after perturba-
tion of t = t) F is inner semicontinuous
(isc) at t ∈ T if for any x ∈ F.t/ and se-
quencetl → t there exists a sequencexl
such thatxl ∈ F.tl /, for l large enough,
and‖xl − x‖ → 0.
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The mappingF is called continuous att
if it is both osc and isc att

Ex.8Show forF.t/= {x∈ Rn
| g j.x; t/≤

0; j ∈ J}; t ∈ T (g j continuous) that the
mappingF : T ⇒ Rn is closed onT.

Lower semicontinuity of v.t/. To as-
sure lower semicontinuity ofv at t we (min-
imally) need compactness ofF.t/ (even
in the case thatF.t/ behaves continuously).
Ex.9 (Linear problem,F.t/ ≡ F constant
not bounded andv is not lsc.) For the prob-
lem minx2 − tx1 s.t. x1 ≥ 0; x2 ≥ 0 we
find

v.t/ =

{
0 for t ≤ 0

−∞ for t > 0
and

S.t/ =


{.0;0/} for t < 0

{.x1;0/ | x1 ≥ 0} for t = 0
∅ for t > 0
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We even need the following stronger con-
dition

LC. (local compactnessof F at t) There
exists" > 0 and a compact setC0 such
that ⋃

‖t−t‖≤"

F.t/ ⊂ C0 :

Without this condition LC the lower semi-
continuity ofv is not assured in general.
Ex.10 (F.t/; S.t/ compact, LC does not
hold andv is not lsc andF.t/ is not osc at
t.) Consider the problem

min x2 − x1 s.t. x2 ≤ 2tx1 −
1
2
;

x2 ≤ −tx1; x2 ≥ x1.t/ ;

with a functionx1.t/; x1.0/= −1; x1.t/=

−
1
4 for |t| ≥ 2 (sketch the problem as an

Ex.) we find with continuous functions
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vl .t/; x.t/:

v.t/=


vl .t/ for t ≤ 0

−
1
2 −

√
ln.2/ for t = 0

−
1
4.1+

1
t / for t > 0

and

S.t/ =

{
{.x.t/} for t ≤ 0

{
1
4.

1
t ;−1/} for t > 0 :

The lower semicontinuity ofv depends on
the following technical outer semiconti-
nuity and compactness condition saying
that fort neart at least one pointxt ∈ S.t/
can be approached by elements in a com-
pact subset ofF.t/.

AL. There exists a neighborhoodUt.t/ of
t and a compact setC ⊂ Rn such that for
all t ∈ Ut.t/ with F.t/ 6= ∅ there is some
xt ∈ S.t/ and somext ∈ F.t/∩ C satisfy-
ing ‖xt − xt‖ → 0 for t → t.
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Lemma 3.
(a) Let AL be satisfied att. Thenv is lsc
at t.

(b) Let the local compactness condition
LC be fulfilled att. Then AL is satisfied (
i.e., v is lsc att).

Ex.11 Let the local compactness condi-
tion LC be fulfilled att then the mapping
F is osc att.

The convex case.By Ex.10 in the gen-
eral (non-convex) case the condition∅ 6=

F.t/ compact is not sufficient to assure
the outer semicontinuity ofF and the con-
dition ∅ 6= S.t/ compact does not imply
the lower semicontinuity ofv. Under the
following convexity assumptions the situ-
ation is changed.
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Recall that a functionf .x/, f : Rn
→ R

is called convex if for anyx1; x2 ∈ Rn and
� ∈ [0;1] it follows

f ..1− �/x1+ �x2/≤ .1− �/ f .x1/+ � f .x2/ :

AC. For each (fixed)t ∈ T the functions
g j.x; t/ are convex inx for all j ∈ J.

AC0. In addition to AC, for each (fixed)
t ∈ T the function f .x; t/ is convex inx,
(i.e., the problemsP.t/ are convex pro-
grams).

Lemma 4.Let the convexity condition AC
hold and assume∅ 6= F.t/ is bounded (com-
pact). Then the local compactness condi-
tion LC is satisfied. In particular F is osc
(cf. Ex.11) andv is lsc att (cf. Lemma 3).

In the convex case even the boundedness
of S.t/ is sufficient to assure thatv is lsc
at t.
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Theorem 10.Let the convexity assump-
tion AC0 hold and let S.t/ be nonempty
and bounded (compact). Thenv is lsc at
t.

The upper semicontinuity of v.t/. The
upper semicontinuity ofv depends on a
different assumption. The local compact-
ness condition LC is not sufficient (and
not necessary).
Ex.12For the problem
minx1 s.t. x2

1 + x2
2 ≤ −t , which obvi-

ously satisfies LC we find

F.t/=

 {x2
1 + x2

2 ≤ |t|} for t < 0
{.0;0/} for t = 0

∅ for t > 0
and

v.t/ =

{
t for t ≤ 0

∞ for t > 0
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The problem here is that the mappingF
is not isc att. To assure the upper semi-
continuity of v at t we only need an in-
ner semicontinuity condition at one point
x ∈ S.t/.

AU. There exist a minimizerx ∈ S.t/ and
a neighborhoodUt.t/ of t such that for all
t ∈ Ut.t/ there is somext ∈ F.t/ satisfy-
ing ‖xt − x‖ → 0 for t → t.

Lemma 5.Let AU be fulfilled att. Thenv
is usc att.

A natural condition to force the assump-
tion AU is a so-calledConstraint Qualifi-
cation(CQ).

Definition 3.TheConstraint Qualification
CQ is said to hold at.x; t/ with x ∈ F.t/
if there is a sequence x� → x such that

g j.x�; t/ < 0 holds for all j∈ J :
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Corollary 1. Let CQ be satisfied at.x; t/
for (at least) one pointx ∈ S.t/. Then the
condition AU is satisfied,i.e., v is usc at
t.

Ex.13 Let CQ hold at.x; t/, x ∈ F.t/.
Then there is a neighborhoodUt.t/ of t
such thatF.t/ is nonempty for allt ∈ Ut.t/.
If CQ holds at.x; t/ for each pointx ∈

F.t/ thenF is isc att.

The behavior ofS(t). Let us shortly study
the continuity properties of the mapping
S.t/.
Obviously the inner semicontinuity ofS

is stronger than the condition AU. So ifS
is isc the functionv is usc (see Lemma 5).
However the inner semicontinuity ofS.t/
is a very ’strong’ condition. Even if the
local compactness condition LC and the
Constraint Qualification hold it need not
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to be satisfied. We give an example.

Ex. 14 (LC and CQ holds butS is not
isc.) min x2− tx1 s.t. |x1| ≤ 1; |x2| ≤ 1:
Then neart = 0 we obtain

S.t/=


{.−1;−1/} for t < 0

{.x1;−1/ | |x1| ≤ 1} for t = 0
{.1;−1/} for t > 0

and

v.t/ = −1− |t| :

We now discuss the closedness and the
outer semicontinuity ofS.

Ex.15Let CQ be satisfied at.x; t/ for (at
least) one pointx ∈ S.t/. ThenSis closed
at t
Ex. 16 Let S.t/ be compact and assume
∅ 6= S.t/ for a neighborhoodUt.t/ of t
andS is osc att. Then AL holds implying
thatv is lsc att (see Lemma 3).
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Lemma 6.Let LC be satisfied att and let
CQ hold at .x; t/ for (at least) onex ∈

S.t/. Then there exists a neighborhood
Ut.t/ of t such that for all t∈ Ut.t/ the set
S.t/ is nonempty and compact. Moreover
the mapping S is osc att.
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