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1. PARAMETRIC EQUATIONS

Consider the non-parametric equation: Solve
F(X) = X2 —2Xx—1=0
with solutionsxy » = 14 /2.

The parametric version is: Fore R find
a solutionx = x(t) of

(1) F(X, 1) = X2 — 2t°x —t* = 0
The solutions are
X1 o(t) = t2 £ V2% = t2(1+ V/2)

Ex.1 Sketch the solution curve In th{&, t)-
space.

At t = 0 with solutionX = 0 we find for
the gradient of-

o 2% — 2t2 0
VXD = (—4tx—4t3)_f: (0) '
Xa
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Rule. The solution set oF (x, t) = 0 where
F : R? - Ris “normally” (locally) given
by aone-dimensionadolution curvex(t), t).
However at pointgX, t) whereVF (X, t) =

O holds the solution set hassangular-

Ity (such as a bifurcation or a nonsmooth-
ness).

Two versions of the Implicit Function
Theorem

We consider systems aof+ p equations
In n variables:

F(x,t)=0  where F:R"xRP—-> R"
The Implicit Function Theorem (IFT) makes

a statement on the structure of the solu-
tion set in the “normal” situation.
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Theorem 1.(IFT for one equation)
Let F: RK - R be a C-function. Sup-
pose fory € RX we have Ky) = 0 and
VE(Y) # 0. Then nealy the solution set
S(F) :={y e RK| F(y) = 0} is a Cl-
manifold of dimension k 1. Moreover
aty

VFE(y) L S(F)
and the gradientVF(y) points into the
region where ky) > F (V).

Ex.2 Give a geometrical sketch of the state-
ment.
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Theorem 2.(General version of the IFT)
Let F: R" x RP — R" be a C-function
F(x,t) with (x,t) € R" x RP. Suppose
for (X,T) e R" x RPwe have kx,T) =0
and the matrixVgF (X, t) is nonsingular.
Then in a neighborhood () of t the so-
lution set SF) .={(X,t) | F(Xx,t) =0} Is
described by a &function x;: Ut(f) —» R
such that xt) = X and

F(x(t),t) =0 forte Ui(t) .

(So, locally, $F) is a p dimensional &
manifold.) Moreover the gradieri¥x(t)
IS given by (te Ut(1))

VX(t) = —[VxF (x(t), D] TV (x(1), 1) .
Proof. Seee.g, [7]. Note that if x(t)

is aCl-function satisfyingF (x(t),t) = 0
then by differentiation wrtt we find

VyF (X(t), ) VX + ViF(x(t),t) = 0.



2. PARAMETRIC UNCONSTRAINED
OPTIMIZATION

2.1. Non-parametric minimization. We
assume thaf : R" — R is aC?-function.
The pointx € R" is alocal minimizerof
f if there iIs some > 0 such that

f(X) < f(X) VX, [[X—=X]| < ¢.
It is called astrict local minimizer if:
f(X) < T(X) VX#£X, [|X=X]| < e.
Theorem 3.(Necessary and sufficient op-
timality conditions) (see.qg, [4])
(a) If X Is a local minimizer of f then
ViX)=0 and sz(i) > 0 (pos. semidetf.)
(b) If X satisfies
ViX) =0 and V%f(X)>0 (pos. definite)
thenX is a strict local minimizer of f.
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2.2. Parametric minimization. Let f (X, t)
be aC? function, f : R" x T — R, where
T c RP is open. We consider theara-
metric problem fort € T find a (local)
solutionx = x(t) of

(2) P(t) : min f(x,t)

xeRN

To solve this problem, fore T, we have
to find solution of thecritical point equa-
tion

(3) F(X,t) ;= Vxf(Xx,t) =0.
The next examples show the possible bad

behavior.
Ex.3 For

P(t) : min f(x,t) := %XB — t%x

the minimizer is given by(t) = [t| with
minimal valuev(t) := f (x(t), t) = —5|t|°.



Ex.4 For
1 4
P(t): min f(x,t): _:—%x 3 _t2x% —t%x

the critical points are given by the curves
x1.2(t) = t2(1 4 +/2) and the minimizer
by X1 (1).

Rule. The following appears:

e The value functiorw(t) = f(x(t),t)
may behave “smoother” than the min-
Imizer functionx(t).

¢ A singular behavior appears at solu-
tion points(X, t) of Vx f (X, t) =0 where
the matrixV2 f (X, T) is singular.

Ex.5 Check the singular behavior for the
examples Ex.3 and Ex.4.

The next theorem describes the situation
near a non-singular solutigix, t) of (3).
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Theorem 4.(local stability result) Letx
be a solution of ), t € T, such that

Vxf(X,t) =0 and V)Z(f(x, t) > O (pos. detf.).

Then in a neighborhood (&) there is a
Cl-function x: Ut(f) — R"such that xt) =
X and for any te Ui(t), x(t) Is a strict
local minimizer of Rt). Moreover for
t e U(1),

V() = —[VZ T (x(1), D] TIVZ4 F (x(D), 1),

and the value function(t) := f(x(t), t)
is a C2-function with

Vu(t) = Vi F(X(1), 1)
and
V2u(t) = V& f(X(1), t) VX(t) + V£ (X(1), 1) .
Proof. Apply the IFT to the equation
Vyf(x,t) =0.
Rem. Note thatx(t) is C but v(t) is C2.
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3. PARAMETRIC CONSTRAINT
OPTIMIZATION

3.1. Non-parametric programs. Consider
nonlinear programs

(4)
P: min f(x) s.t. xe # :={x]gj(X) <0, j e J}

xeRN

with index setd = {1, ..., m}. The setF
IS calledfeasible set

Def. A pointX € ¥ is called local mini-
mizer of orders= 1 ors= 2 If there are
constantg, ¢ > 0 such that

f(x)— f(X)>cl|x=X|°> Vxe F,|x—=X| <«.

It iIs a global minimizer if f(x) > f(X)
holdsvx € F.

ForX € F we introduce thective index
set

Jo(X) ={] € J| gj(X) =0}
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and theLagrangian function
Lo, )= OO+ D 1jgj(x0).
J€Jo(X)
The coefficients. j are called-agrangian
multipliers. We say that thé.inear Inde-

pendence constraint qualificatighlCQ)
IS satisfled ak € ¥ If

Vgj(X), | € Jo(X), are linearly independent
The next theorem gives the famdgarush-

Kuhn-Tucker(KKT) sufficient optimality
conditions.
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Theorem 5.(Sufficient optimality condi-

tions)

LetX € ¥ satisfy LICQ.

(@) (Order one) Let with multiplierge;

the KKT condition

(5)

VWX m =VI®+ D mVgj®) =0,
J€Jo(X)

wj >0, ] € Jp(X), be satisfied such that

wj>0, Vje Jp(X) (Strict complement. (SC))

and|Jp(X)| = n. ThenX Is a local mini-

mizer of (P) of order s= 1.
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(b) (Order two) Let with multipliergz
the KKT condition (5) be satisfied such
that (SC) holds and theecond order con-
dition (SOC)

SOC:  d'ViL(x, m)d > 0 vd e Tx\ {0}
where T is the tangentspace

Tx={d| Vg;(x)d=0, j e Jp(X)}. Then
X is a local minim. of (P) of order s 2.

EXx.6 Show that the poirit = 0 is the min-

iImizer of orders = 1 of the problem

X1

minxs s.t. e "1 —x>—1<0, X—% <0

Rem. The KKT conditions can also be
given in the equivalent (global) form:

(G)Vf(x)-l-ZMngj(X) =0
jed
nj-9j(x) =0, je
nji, —gjx) >0, jed.
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3.2. Parametric programs. We consider

nonlinear parametric programsf the form:

Let T ¢ RP be some open set. Foe T

find local minimizersx = x(t) of

(7) P(t): min f(x,t) s.t. xe F(1),
xeRN

where

F) ={X|gjx,t) <0, jeJ}.

Fort € T and feasiblex € ¥ (t) we de-
note by Jy(X, t) the active index set and
by L(x, t, u) the Lagrangian function

Lot =fh+ D pjgjxt).
je Jo(X,D)

To find (near(X, t)) local minimizersx of

P(t) we are looking for solutionéx, t, 1)

of the KKT-equations (withej > 0)

(8)

F(X, t, //L) — VXI—(X’ t’ M) =0

gj(x,t) =0, j e Jp(X1).
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From the sufficient optimality conditions
In Theorem 5 we obtain

Theorem 6.(Local stability result) Lek
¥ (t). Suppose that with multiplierg;
the KKT conditionvVgL (X, t, w) = 0is sat-
Isfied such that
(1) LICQ holds atx wrt. F (1).
(2w >0, Vje Jp(X, 1) (SC)
and either
(3a)(order one)| Jp(X, )] = n
or
(3b) (order two)
d'VEL(X, T, 71)d > 0 vd € Ty 1\ {0}
where T ; Is the tangentspacex
{d] Vxgj(X,H)d =0, | € Jo(X, 1)}.
(According to Theorem X is a local min-

Imizer of Rt) of order s= 1in case (3a)
and of order s= 2in case (3b)).
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Then there exist a neighborhood(®) of
t and C'-functions x: Ut(f) — R", u :
Ut (T) » ROl sych that xt) =X, w(T) =
 and for any te Ut (t) the point Xt) is
a strict local minimizer of t) with cor-
responding multipliey (t). Moreover for
t € Ut(t) the derivatives of &), 1 (t) and
the value functiorv(t) = f(x(t),t) are
given by

(i) ) = TP OOt @I Xt e)

and

Vu(t) = ViL(X(1), t, u(t)) .
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Ex.7 Let A € R™MN be a symmetric ma-
trix and B € R"™M (n > m). Suppose the
matrix B has full rankm and the follow-
Ing holds:

d"Ad#£0 vdeR"suchthaB'd=0.
Show that then the following matrix is reg-

ular:
A B
Bl 0

Rem. Many further (often difficult) re-
sults are dealing with the generalization
of this stability result under weaker as-
sumptionsi(e., LICQ or SC does not hold;
seee.qg, [2], [3]).
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4. LINEAR PARAMETRIC PROGRAMS

4.1. Non-parametric linear programs.
Let be given a matrixA e RN with m
rowsal, je J:={1,..., m} and vectors
b e IR{”{ c € R". We consideprimal prob-
lems of the form

(9) P: maxc'x s.t. x e Fp

Fp={x|ajx<bj, jed}.

We often write the feasible set in compact
form F = {x| AXx < b}. The problem

(10) D: minb'y st ye %p

m
Fo=1{yl D _yjaj=c.y>0)
j=1
Is called the dual problem. A vectare
Fp Is called feasible folP and a vectoy
satisfying the feasibility conditionaTy =
c,y > O is called feasible foD. Let vp,
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vp resp. denote the maximum value lef
resp. minimum value obD.

Lemma 1. (weak duality) Let x be fea-

sible for P and y be feasible for D. Then

c'x<b'y andthus vp<vp.

If c"x =b'y holds then x is a maximizer
of P and y a minimizer of D.

Proof. As EX.

For X € ¥p as usual we define the active

index setJy(X) = {j | aij = bj}. Fora

subset]y C J we denote byA;, the sub-

matrix of A with rowsajT, j € Jpand for

y € RMby yj;, the vector(yj, j € Jp).

Def. A feasible pointx € ¥p Is called a

vertex of the polyhedrotip if the vectors
aj, j € Jp(X) form a basis oiR"

or equivalently ifA,x) has rankn. (This
implies|Jp(X)| > n.
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The vertexX is called nondegeneratef
LICQ holds, i.e, aj, | € Jp(X) are lin-
ear independent (implyinglp(X)| = nor
equivalentlyA ,(x) Is non-singular).

Theorem 7.

(a) (Existence and strong duality) If both
P and D are feasible then there exist so-
lutions X of P andy of D. Moreover for
(any of) these solutions we have

c'x = bTV and thus vp=vp.
(b) (Optimality conditions) A poInk
Fp Is a solution of P if and only if there

IS a corresponding/ € ¥p such that the
complementarity conditions

y' (b—AX) =0 or (b —a-er() =0,VjeJ
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hold or equivalently if there exisig, | €
Jo(X), such that KKT conditions are sat-
Isfied:
> yjaj=c, ¥j>0, je X .
J€Jo(X)
It appears that normally the solution Bf
arises at a vertex ofp.

Lemma 2.1f the polyhedronfp has a ver-
tex (at least one) andp < oo then the
max valuevp of P is also attained at some
vertex of fp.

Rem. The Simplex algorithm for solv-
Ing P proceeds from vertex to vertex of
Fp until the optimality conditions in The-
orem 7(b) are met.
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4.2. Parametric linear programs. In a

parametric LP we have givenG¢-matrix

function A(t) : RP — RM™M with mrows

ajT(t), jeJ:={1,...,m}andC? vector

functionsb(t) : RP - R™M c(t) : RP —

RM and the open parameter Setc RP:

For anyt € T we wish to solve the primal

program

(11) P(t): max CT(t)X S.t. xe Fp(t)
Fp(t) = {X| A(t)x < b(t)}

The corresponding dual reads

(12) D(t) : min bT(t)y s.t. ye 9p

Fo={yl AT)y=c(t),y >0} .
Fort e T andX € Fp(t) the active index
set isJp(X, ).
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Linear Production Model, Shadow Prices
Assume a factory produceslifferent prod-
uctsPy, ..., Pn. The production relies on
material coming fronmdifferent resources
R1, ..., Rm In such a way that the pro-
duction of 1 unit of a producP; requires
gjj units of resourcd’;, fori =1,..., m.

Suppose we can sell our production for
the price ofcj per 1 unit of P; and thatb;
units of each resourdg; are available for
the total production. How many uniss
of each produc®P;j should we produce in
order to maximize the total receipt from
the sales?

An optimal production plai = (X4, ..., Xn) |
corresponds to an optimal solution of the
linear program
(13)

P: maxc'x st Ax<bh, x>0.



Here A = (&;j) Is the matrix with the ele-
mentsa;j. LetX be a solution with corre-
sponding solutiory of the dual problem
(14)

D: min bTy S.t. ATVZ c, y>0.

and maximum profig = c'x=b'y.

Could we possibly increase the profit by
spending money on increasing the resource
capacityb and adjusting the production
plan? If so, how much would we be will-
Ing to pay for 1 more unit of resourdg?

Let us increase (for fixed the capacity
of R frombj to b = bj +t, y is still feasi-
ble. So weak duality gives the following
upper bound on the expected profit:

Z <biyi+...+b¥i+...+bmym

m
=t-¥i+ D bsys=t-¥i+2.

s=1
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Accordingly, we would not want to pay
more thart - y; for t more units ofR;. In
this sense, the coefficienis of the dual
optimal solutiony can be interpreted as
theshadow price®f the resources;.

Note that for the value function(t) In
dependence from the parameteve find

v(t) —v(0) Z -7 _
" = <VYi.

REMARK. The notion of shadow prices
furnishes also an intuitive interpretation
of complementary slackness. If the slack
§ = b — Z?:laij)_(j is strictly positive
at the optimal productior, we do not use
resourceR; to its full capacity. Therefore,
we would expect no gain from an increase
of R;’s capacity.
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General caseWe come back to the gen-
eral parametric LP in (11). Suppose for
t € T the pointx € Fp(X) Is a vertex solu-
tion of P(t). To find fort neart solutions
X(t) of P(t) we have to find feasible solu-
tions x andy of the system of optimality
conditions:

and
(16)

i T _ _ _
D Ay xiYixDh = Caxb: Yixd 20

If Xis a non-degenerate vertexs., A x )
IS nonsingular, this is possible by apply-
Ing the IFT to these systems.

Theorem 8.(Local stabllity result) Lek e
Fp(t) be a vertex solution of @) with
corresponding dual solutiog; 5 ¢ such
that



(1) X iIs a nondegenerate vertex., LICQ
holds.
(2)yj >0, V] € Jo(X, 1) (SC)
(According to Theorem % is a local min-
Imizer of Rt) of order s=1.) Then there
exist a neighborhood {¢t) and C'-functions
x:Ut® — R,y x5 : Ut® — RIJ0X.D
such that Xt) = X, y3,x5 1) = Yi,x5
and for any te Ui(t) the point Xt) is a
vertex solution of &) (of order s=1) with
corresponding multiplier Yy x.©) (- More-
over for te Ui(t) the derivatives of )
and the value function(t) = cT (t)x(t)
are given by

VX(t) — [AJO()_(,T) (t)]_l (Vb\]o()—(,f) (t) - VAJO()_(,T) (t)X)
and
Vo(t) = [Ve kb )] " x

+Y 30 D1 [VD x5 (D = VAL 5 5 (DX
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Rem. The production model case above
IS a special case wherA, ¢ do not de-
pend ont € R (so p = 1) and (for fixed

i € Jo(X, D) Fb Kxp® = & (& is the
ith unit vector inR/ 90D the so that

1 _ _
O =[Yxp®l'e =7
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S. APPLICATIONS

5.1. Interior point methods. The basic
idea of the interior point method for solv-
INg a hon-parametric program

P: min f(X) s.t. gj(x) <0, JeJ

xeRN

IS simply as follows. Consider the per-
turbed KKT system
(17)
VIi(X) + _ZJijgj(X) =0

je

—uj-gjx) =71, Jed,

ni, —gjx) >0, jed.
wheret > 0 Is a perturbation parameter.
The ideais to find solutions(t) andu j (1)
of this system (satisfying-gj(x(7)), uj(t) >
0) and to letr || 0. We expect thak(t)
converges to a solutioxof P.

F(X, T, n) .=
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Under the sufficient optimality conditions
this procedure is well-defined (at least for
small 7).

Theorem 9.LetX be a local minimizer of
P such that the sufficient optimality con-
ditions of Theorem 5 are fulfilled with mul-
tiplier 1 so thatz; > O holds for all je
Jo(X). Then there exists Efunctions x;
(—a, ) > R, nj:(—a,a) > R, Je
Jo(X) (@ > O) suchthat X0) =X, uj(0) =
wj, and Xt), uj(r) are locally unique
solutions of (17)

Proof. Follows by applying the IFT to the
equation (17). ]
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5.2. A parametric location problem. We

consider a concrete location problem in
Germany (see [6] for details). Suppose
some good is produced at 5 existing plants

at Iocations_j =(s1,8), j=1,..,5 (s

Iongitude,sé latitude in Germany) and a
sixth new plant has to be build at loca-
tiont = (11, ty) (to be determined) to sat-
Isfy the demands o¥/j units of goods In
99 townsi at locationt' = (£4, £5), i =
1,...,99. Suppose (for simplicity) that
the transportation costj from plant] to
town 1 (per unit of the good) is (propor-
tionally to) the Euclidian distance

6j=+/(sl — )2+ (s — )2 j=1,..5

Cio(t) = /(ts — )2+ (o — €1)2, Vi
Suppose further that the total demane-
> i Vi will be produced in the 6 plants with
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a production ofp; units of the good in
plant ] where

10 30 10
P1 = Vl—OO’ P2 = Vl—OO’ P3 = Vl—OO’

15 15 20
P4 = Vﬁ), = Ps = Vm» Pe = Vm-

The problem now is to find the location

t = (1, tp) of the new plant such that the
total transportation costs are minimized.
For any fixed location the optimal trans-
portation strategy is given by the solution
of the transportation problem (standard LP),
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Hereyjj Is the number of units of the good
to be transported from plantto towni.
The problem is now to find a (global or
local) minimizer ofv(t). Most local mini-
mization algorithm are based on the com-
putation of the (negative) gradient of the
objective function at some actual potnt
tK, d = —Vu(tK).

Suppose thatyzikj is the vertex solution of

P(tX). Then by the results of Section 4.2
the gradient can be computed via the for-
mula

VoK) = ViL(yK, t5 25 =

1 (tg — £})
Zy'@‘ e ( (ta - £'2>)

Jt1— )2+ (tp -
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6. PATHFOLLOWING IN PRACTICE

We shortly discuss how a solution curve
(X(t), t) of a one-parametric equation
F(x,t)=0 F:R"xR— R" teR,
can be followed numerically.

The basic idea is to use some sort of New-
ton procedure. Recall that the classical
Newton method is the most fundamental

approach for solving a system pfequa-
tions inn unknowns:

F(x)=0 F:R"—> R".
The famous Newton iteration for comput-
Ing a solution Is to start with some (ap-

propriate) starting poinx® and to iterate
according to

X<t K IVEOM] IR, k=01, ...

It Is well-known that this iteration con-
verges quadratically to a solutigof F (X) =
Oif
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e XU is chosen close enough Xand if

e VF(X) Iis a non-singular matrix.

The simplest way to follow approximately
a solution curvex(t) of F(x,t) =0, I.e,,
F(x(t),t) =0, on an intervat € [a, b] is

to discretize &, b] by

b—a
tg:a+£T, ¢=0,...,N
(for someN e N) and to compute for any
¢ =0,...,N, a solutionx, = x(ty) of

F (X, ty) = 0 by a Newton iteration,
<LK IVEGK t)17IF (K 1)), k=0, 1
/4 — Y 2 V4 Y L) — My =y e

starting withx? = x,_1 (for £ > 1).
We refer the reader to the book [1] for
detallse.g, on:

e How to perform pathfollowing efficiently?

e How to deal with branching point¥, t)
where different solution curves inter-
sect?
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/. GENERAL PARAMETRIC
PROGRAMMING

In the next sections we analyze the para-
metric behavior under weaker assumptions
where the Implicit Function Theorem is
no more applicable. We try to keep the
Introduction of 'new’ concepts to a mini-
mum and to motivate the results by exam-
ples.

Consider again the parametric optimiza-
tion problem
(18) P(t): min f(x,t) s.t. xe F(t)

xeRN
F() :={xeR"|gj(x,t) <0, je J},

depending on the parametet T, where

T c RP is an open parameter set. Again
J:={1,...,m}. All functions f, g are
assumed to be (at least) continuous every-
where.



Notation: Letv(t) = minyc gty T(X 1)
denote the minimal value d®(t) (v(t) =
oo If F(1) = @) and let S(t) the set of
(global) minimizers. The mappings :
T =R"andS: T = R" are so-called set-
valued mappings.

Problem of parametric optimization: How
do the value functionv(t) and the map-
pingsF(t), S(t) change witht. (Continu-
ously, smoothly?)

Definition 1. Let v : T — Ry be given,
Roo = R U {—00, o0}.

(a) The functionv Is calledupper semi-
continuouqusc) att e T ifforanye > 0

there exist$ > 0 such that

v(t) <v®)+e forall||t—1| <§.

(b) The functionv is calledlower semi-
continuoug(lsc) att € T if forany ¢ > O
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there exist$ > 0 such that
v(t) >v()—¢ forall|t—tj| <3§.

We shall see that the lower- and upper
semicontinuity of the value function(t)
depend on different assumptions. Obvi-
ously to assure the lower semicontinuity
of v att the feasible seF (t) should not
become essentially larger by a small per-
turbationt of t and to assure the upper
semicontinuity ofv the setF(t) should
not become essentially smaller after a per-
turbation. To avoid an ’explosion’ d# (1)

we will need some compactness assump-
tions for F(t) and to prevent an 'implo-
sion’ a Constraint Qualification will be needed.
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Definition 2. Let the set valued mapping
F: T = R" be given.

(a) F is calledclosedatt € T if for any
sequences, X, | e N, witht) > t, x €

F (1)) the conditionx; — X implies X
F(1).

(b) (no explosion of ) after perturba-
tionoft=1) F is calledouter semicon-
tinuous(osc) att € T if for any sequences
t,x,l e Nwithty > t, X € F(t)) there
existsX; € F(t) such that|x, —%X|| > 0
for |l — oo.

(c) (no implosion of Kt) after perturba-
tionoft=1t) F isinner semicontinuous
(isc) att € T if for any X € F(t) and se-
guencet; — t there exists a sequenge
such thatx; € F(t)), for | large enough,
and||x; — X|| — O.
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The mappingF is called continuous &t
If it is both osc and isc 4t

Ex.8Show forF (t) = {xe R" | gj(x, t) <
O, J € J}, t e T (g; continuous) that the
mappingF : T = R"is closed orT.

Lower semicontinuity of v(t). To as-
sure lower semicontinuity afatt we (min-
imally) need compactness &f(t) (even
In the case thak (t) behaves continuously).
Ex.9 (Linear problem[F (t) = F constant
not bounded andis notlsc.) For the prob-
lem minxy —txq s.t. X1 > 0, Xo > 0 we
find
v(t):{ 0 fort<O

—oo fort >0 and

{(0,0)} fort <O
S(t) =1 {(X1,0) | X >0} fort=0
0 fort >0
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We even need the following stronger con-
dition
LC. (local compactnessf F att) There

existse > 0 and a compact s&iy such
that

] Fcc.
It—tll<e
Without this condition LC the lower semi-
continuity ofv Is not assured in general.
Ex.10 (F(t), S(t) compact, LC does not
hold andv is not Isc and-(t) is not osc at
t.) Consider the problem

min Xo — Xq S.t. Xo < 2tXq — >
Xp < —1Xp, X2 = X1(1),

with a functionxy (t), X1(0) = —1, x1(t) =

—%1 for |t| > 2 (sketch the problem as an

Ex.) we find with continuous functions
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v (b)), X(1):

v (1) fort <O

v(t)=1 —3—+/IN2) fort=0 and
—3(1+3¢) fort>0

[(x(t)} fort<O

S(U) = { (2(1,—1)} fort > 0.

The lower semicontinuity of depends on
the following technical outer semiconti-
nuity and compactness condition saying
that fort neart at least one point; € S(t)

can be approached by elements in a com-
pact subset oF (1).

AL. There exists a neighborhoa#f(t) of
f and a compact s& c R" such that for
all t € Ut(t) with F(t) # 0 there i1s some
Xt € S(t) and somé&; € F(T) N C satisfy-
INg || Xt — Xt|| = O fort — t.
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Lemma 3.

(a) Let AL be satisfied @t Thenv is Isc
att.

(b) Let the local compactness condition
LC be fulfilled att. Then AL is satisfied (
l.e., vis Isc att).

Ex.11 Let the local compactness condi-
tion LC be fulfilled att then the mapping
F is osc at.

The convex caseBy Ex.10 in the gen-
eral (non-convex) case the conditi@nr#
F(t) compact is not sufficient to assure
the outer semicontinuity df and the con-
dition ¥ # S(t) compact does not imply
the lower semicontinuity ob. Under the
following convexity assumptions the situ-
ation is changed.



45

Recall that a functiorf (x), f : R" > R
is called convex if for anyy, xo € R"and
t € [0, 1] it follows

f(l—1)X1+ 1) < (1—1)F (X)) +tf(X0).

AC. For each (fixed} € T the functions
gj(x, t) are convex irx for all | € J.

ACy. In addition to AC, for each (fixed)
t € T the function f (X, t) IS convex inx,
(l.e., the problemsP(t) are convex pro-
grams).

Lemma 4.Let the convexity condition AC
hold and assum@ £ F (t) is bounded (com-
pact). Then the local compactness condi-
tion LC is satisfied. In particular F is 0sc
(cf. Ex.11) andv is Isc att (cf. Lemma 3).

In the convex case even the boundedness
of S(t) Is sufficient to assure thatis Isc
att.
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Theorem 10.Let the convexity assump-
tion AG hold and let $t) be nonempty
and bounded (compact). Thens Isc at
t.

The upper semicontinuity of v(t). The
upper semicontinuity ob depends on a
different assumption. The local compact-
ness condition LC is not sufficient (and
not necessary).

Ex.12 For the problem

minx; s.t. x¢+ x5 < —t, which obvi-
ously satisfies LC we find

{X24+ x5 < |t|) fort <O
F(t) = { {(0,0)}) fort=0 and
) fort>0

t fort<O
oo fort> 0

v(t) = {
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The problem here is that the mappikg
IS not isc att. To assure the upper semi-
continuity of v att we only need an in-
ner semicontinuity condition at one point
X € S(1).

AU. There exist a minimizex € S(t) and
a neighborhoodl;(t) of t such that for all
t € Ut(t) there is some; € F(t) satisfy-
INg || Xt — X|| = O fort — t.

Lemma 5.Let AU be fulfilled at. Thenv
IS usc att.

A natural condition to force the assump-
tion AU Is a so-calledConstraint Qualifi-
cation(CQ).

Definition 3. TheConstraint Qualification
CQ is said to hold atX, t) with X € F(t)
If there Is a sequenceg, x> X such that

gj(Xy,t) <0 holdsforall je J.
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Corollary 1. Let CQ be satisfied ai, t)
for (at least) one poink € S(t). Then the
condition AU iIs satisfied,e., v IS usc at
t.

Ex.13 Let CQ hold at(X,t), X € F(1).

Then there is a neighborhodd (t) of t

such that (t) is nonempty for alt € Ut (1).
If CQ holds at(x, t) for each pointx e

F(t) thenF is isc att.

The behavior of S(t). Let us shortly study
the continuity properties of the mapping
S(t).

Obviously the inner semicontinuity &
IS stronger than the condition AU. So%f
IS Isc the functiorv is usc (see Lemmab).
However the inner semicontinuity &(t)
IS a very ’'strong’ condition. Even if the
local compactness condition LC and the
Constraint Qualification hold it need not
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to be satisfied. We give an example.

Ex. 14 (LC and CQ holds but is not

ISC.) minXxo —tX1 S.t. |X1] <1, |xo| < 1.

Then neat = 0 we obtain
{((-1,-1)} fort <O

St)=13 {(X1,=1)||xq] <1} fort=0 and
{((1, —-1)} fort >0

v(t) =—-1—-1|t].

We now discuss the closedness and the
outer semicontinuity os.

Ex.15Let CQ be satisfied at, t) for (at
least) one poink € S(t). ThenSis closed
att

Ex. 16 Let S(t) be compact and assume
@ # S(t) for a neighborhoodJ;(t) of t
andSis osc at. Then AL holds implying
thatv Is Isc att (see Lemma 3).
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Lemma 6.Let LC be satisfied dtand let
CQ hold at(x,t) for (at least) onex e
S(t). Then there exists a neighborhood
Ut (t) of t such that for all te Ut (1) the set
S(1) iIs nonempty and compact. Moreover
the mapping S is osc at
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