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1. PARAMETRIC EQUATIONS

Consider the non-parametric equation: Solve

F.x/ := x2
− 2x− 1 = 0

with solutionsx1;2 = 1±
√

2.
The parametric version is: Fort ∈ R find
a solutionx = x.t/ of

(1) F.x; t/ := x2
− 2t2x− t4 = 0

The solutions are

x1;2.t/ = t2 ±
√

2t2 = t2.1±
√

2/

Ex.1Sketch the solution curve in the.x; t/-
space.

At t = 0 with solutionx = 0 we find for
the gradient ofF

∇F.x; t/ =

(
2x− 2t2

−4tx− 4t3

)
x;t

=

(
0
0

)
:
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Rule.The solution set ofF.x; t/= 0 where
F : R2

→ R is “normally” (locally) given
by aone-dimensionalsolution curve.x.t/; t/.
However at points.x; t/where∇F.x; t/=

0 holds the solution set has asingular-
ity (such as a bifurcation or a nonsmooth-
ness).

Two versions of the Implicit Function
Theorem
We consider systems ofn + p equations
in n variables:

F.x; t/= 0 where F : Rn
×Rp

→ Rn:

The Implicit Function Theorem (IFT) makes
a statement on the structure of the solu-
tion set in the “normal” situation.
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Theorem 1.(IFT for one equation)
Let F : Rk

→ R be a C1-function. Sup-
pose fory ∈ Rk we have F.y/ = 0 and
∇F.y/ 6= 0. Then neary the solution set
S.F/ := {y ∈ Rk

| F.y/ = 0} is a C1-
manifold of dimension k− 1. Moreover
at y

∇F.y/ ⊥ S.F/

and the gradient∇F.y/ points into the
region where F.y/ > F.y/.

Ex.2Give a geometrical sketch of the state-
ment.
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Theorem 2.(General version of the IFT)
Let F : Rn

× Rp
→ Rn be a C1-function

F.x; t/ with .x; t/ ∈ Rn
× Rp. Suppose

for .x; t/ ∈ Rn
× Rp we have F.x; t/ = 0

and the matrix∇xF.x; t/ is nonsingular.
Then in a neighborhood Ut.t/ of t the so-
lution set S.F/ := {.x; t/ | F.x; t/ = 0} is
described by a C1-function x: Ut.t/ → R
such that x.t/ = x and

F.x.t/; t/ = 0 for t ∈ Ut.t/ :

(So, locally, S.F/ is a p dimensional C1-
manifold.) Moreover the gradient∇x.t/
is given by (t∈ Ut.t/)

∇x.t/= −[∇xF.x.t/; t/]−1
∇tF.x.t/; t/ :

Proof. Seee.g., [7]. Note that if x.t/
is aC1-function satisfyingF.x.t/; t/ = 0
then by differentiation wrt.t we find

∇xF.x.t/; t/∇x+ ∇tF.x.t/; t/ = 0 :
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2. PARAMETRIC UNCONSTRAINED

OPTIMIZATION

2.1. Non-parametric minimization. We
assume thatf : Rn

→ R is aC2-function.
The pointx ∈ Rn is a local minimizerof
f if there is some" > 0 such that

f .x/ ≤ f .x/ ∀x; ‖x− x‖ < " :

It is called astrict local minimizer if:
f .x/ < f .x/ ∀x 6= x, ‖x− x‖ < ".

Theorem 3.(Necessary and sufficient op-
timality conditions) (seee.g., [4])
(a) If x is a local minimizer of f then

∇ f .x/= 0 and ∇
2 f .x/≥ 0 (pos. semidef.)

(b) If x satisfies

∇ f .x/= 0 and ∇
2 f .x/ > 0 (pos. definite)

thenx is a strict local minimizer of f .
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2.2. Parametric minimization. Let f .x; t/
be aC2 function, f : Rn

× T → R, where
T ⊂ Rp is open. We consider thepara-
metric problem: for t ∈ T find a (local)
solutionx = x.t/ of

(2) P.t/ : min
x∈Rn

f .x; t/

To solve this problem, fort ∈ T, we have
to find solutionsx of thecritical point equa-
tion

(3) F.x; t/ := ∇x f .x; t/ = 0 :

The next examples show the possible bad
behavior.

Ex.3 For

P.t/ : min f .x; t/ :=
1
3

x3
− t2x

the minimizer is given byx.t/ = |t| with
minimal valuev.t/ := f .x.t/; t/= −

2
3|t|

3.
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Ex.4 For

P.t/ : min f .x; t/ :=
1
3

x3
− t2x2

− t4x

the critical points are given by the curves
x1;2.t/ = t2.1 ±

√
2/ and the minimizer

by x1.t/.

Rule. The following appears:

• The value functionv.t/ = f .x.t/; t/
may behave “smoother” than the min-
imizer functionx.t/.

• A singular behavior appears at solu-
tion points.x; t/ of ∇x f .x; t/= 0 where
the matrix∇2

x f .x; t/ is singular.

Ex.5 Check the singular behavior for the
examples Ex.3 and Ex.4.

The next theorem describes the situation
near a non-singular solution.x; t/ of (3).
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Theorem 4.(local stability result) Letx
be a solution of P.t/, t ∈ T, such that

∇x f .x; t/= 0 and ∇
2
x f .x; t/ > 0 (pos. def.).

Then in a neighborhood Ut.t/ there is a
C1-function x: Ut.t/→ Rn such that x.t/=

x and for any t∈ Ut.t/, x.t/ is a strict
local minimizer of P.t/. Moreover for
t ∈ Ut.t/,

∇x.t/= −[∇2
x f .x.t/; t/]−1

∇
2
xt f .x.t/; t/ ;

and the value functionv.t/ := f .x.t/; t/
is a C2-function with

∇v.t/ = ∇t f .x.t/; t/

and

∇
2v.t/= ∇

2
tx f .x.t/; t/∇x.t/+∇

2
t f .x.t/; t/ :

Proof. Apply the IFT to the equation
∇x f .x; t/ = 0.

Rem. Note thatx.t/ is C1 but v.t/ is C2.
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3. PARAMETRIC CONSTRAINT

OPTIMIZATION

3.1. Non-parametric programs. Consider
nonlinear programs:
(4)
P : min

x∈Rn
f .x/ s.t. x∈ F := {x | g j.x/≤ 0; j ∈ J}

with index setJ = {1; : : : ;m}. The setF
is calledfeasible set.

Def. A point x ∈ F is called local mini-
mizer of orders = 1 or s = 2 if there are
constantsc; " > 0 such that

f .x/− f .x/≥ c‖x− x‖s
∀x∈ F ;‖x− x‖< " :

It is a global minimizer if f .x/ ≥ f .x/
holds∀x ∈ F .

For x ∈ F we introduce theactive index
set

J0.x/ = { j ∈ J | g j.x/ = 0}
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and theLagrangian function

L.x; �/ = f .x/+

∑
j∈J0.x/

� jg j.x/ :

The coefficients� j are calledLagrangian
multipliers. We say that theLinear Inde-
pendence constraint qualification(LICQ)
is satisfied atx ∈ F if

∇g j.x/; j ∈ J0.x/; are linearly independent:

The next theorem gives the famousKarush-
Kuhn-Tucker(KKT) sufficient optimality
conditions.
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Theorem 5.(Sufficient optimality condi-
tions)
Let x ∈ F satisfy LICQ.

(a) (Order one) Let with multipliers� j
the KKT condition
(5)
∇xL.x; �/= ∇ f .x/+

∑
j∈J0.x/

� j∇g j.x/= 0 ;

� j ≥ 0; j ∈ J0.x/, be satisfied such that

� j > 0; ∀ j ∈ J0.x/ (Strict complement. (SC))

and |J0.x/| = n. Thenx is a local mini-
mizer of (P) of order s= 1.
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(b) (Order two) Let with multipliers� j
the KKT condition (5) be satisfied such
that (SC) holds and thesecond order con-
dition (SOC)

SOC: dT
∇

2
xL.x; �/d> 0 ∀d ∈ Tx\ {0}

where Tx is the tangentspace
Tx = {d | ∇g j.x/d = 0; j ∈ J0.x/}. Then
x is a local minim. of (P) of order s= 2.

Ex.6Show that the pointx = 0 is the min-
imizer of orders= 1 of the problem

minx2 s.t. e−x1 − x2−1≤ 0; x1− x2 ≤ 0

Rem. The KKT conditions can also be
given in the equivalent (global) form:

∇ f .x/+

∑
j∈J

� j∇g j.x/ = 0(6)

� j · g j.x/ = 0; j ∈ J
� j ; −g j.x/ ≥ 0; j ∈ J :



15

3.2. Parametric programs. We consider
nonlinear parametric programsof the form:
Let T ⊂ Rp be some open set. Fort ∈ T
find local minimizersx = x.t/ of

(7) P.t/ : min
x∈Rn

f .x; t/ s.t. x ∈ F .t/ ;

where

F .t/ := {x | g j.x; t/ ≤ 0 ; j ∈ J} :

For t ∈ T and feasiblex ∈ F .t/ we de-
note by J0.x; t/ the active index set and
by L.x; t; �/ the Lagrangian function

L.x; t; �/= f .x; t/+
∑

j∈J0.x;t/

� jg j.x; t/ :

To find (near.x; t/) local minimizersx of
P.t/ we are looking for solutions.x; t; �/
of the KKT-equations (with� j ≥ 0)
(8)

F.x; t; �/ :=
∇xL.x; t; �/ = 0

g j.x; t/ = 0 ; j ∈ J0.x; t/ :
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From the sufficient optimality conditions
in Theorem 5 we obtain

Theorem 6.(Local stability result) Letx∈

F .t/. Suppose that with multipliers� j
the KKT condition∇xL.x; t; �/= 0 is sat-
isfied such that

(1) LICQ holds atx wrt. F .t/.
(2)� j > 0; ∀ j ∈ J0.x; t/ (SC)

and either

(3a)(order one)|J0.x; t/| = n

or

(3b)(order two)

dT
∇

2
xL.x; t; �/d > 0 ∀d ∈ Tx;t \ {0}

where Tx;t is the tangentspace Tx =

{d | ∇xg j.x; t/d = 0; j ∈ J0.x; t/}.

(According to Theorem 5,x is a local min-
imizer of P.t/ of order s= 1 in case (3a)
and of order s= 2 in case (3b)).
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Then there exist a neighborhood Ut.t/ of
t and C1-functions x: Ut.t/ → Rn, � :
Ut.t/→ R|J0.x;t/| such that x.t/= x,�.t/=

� and for any t∈ Ut.t/ the point x.t/ is
a strict local minimizer of P.t/ with cor-
responding multiplier�.t/. Moreover for
t ∈ Ut.t/ the derivatives of x.t/; �.t/ and
the value functionv.t/ = f .x.t/; t/ are
given by(

∇x.t/
∇�.t/

)
= −[∇x;�F.x.t/; t; �.t//]−1F.x.t/; t; �.t//

and

∇v.t/ = ∇tL.x.t/; t; �.t// :
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Ex.7 Let A ∈ Rn×n be a symmetric ma-
trix and B ∈ Rn×m (n ≥ m). Suppose the
matrix B has full rankm and the follow-
ing holds:

dT Ad 6= 0 ∀d ∈ Rn such thatBTd = 0 :

Show that then the following matrix is reg-
ular: (

A B
BT 0

)
Rem. Many further (often difficult) re-
sults are dealing with the generalization
of this stability result under weaker as-
sumptions (i.e., LICQ or SC does not hold;
seee.g., [2], [3]).
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4. LINEAR PARAMETRIC PROGRAMS

4.1. Non-parametric linear programs.
Let be given a matrixA ∈ Rm×n with m
rowsaT

j ; j ∈ J := {1; : : : ;m} and vectors
b∈ Rm, c∈ Rn. We considerprimalprob-
lems of the form

(9) P : max cTx s.t. x ∈ FP

FP = {x | aT
j x ≤ b j; j ∈ J} :

We often write the feasible set in compact
form F = {x | Ax≤ b}. The problem

(10) D : min bTy s.t. y ∈ FD

FD = {y |

m∑
j=1

y ja j = c; y ≥ 0}

is called the dual problem. A vectorx ∈

FP is called feasible forP and a vectory
satisfying the feasibility conditionsATy=

c; y ≥ 0 is called feasible forD. Let vP,
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vD resp. denote the maximum value ofP
resp. minimum value ofD.

Lemma 1. (weak duality) Let x be fea-
sible for P and y be feasible for D. Then

cTx ≤ bTy and thus vP ≤ vD :

If cTx = bTy holds then x is a maximizer
of P and y a minimizer of D.

Proof. As Ex.

For x ∈ FP as usual we define the active
index setJ0.x/ = { j | aT

j x = b j}. For a
subsetJ0 ⊂ J we denote byAJ0 the sub-
matrix of A with rowsaT

j ; j ∈ J0 and for
y ∈ Rm by yJ0 the vector.y j; j ∈ J0/.

Def. A feasible pointx ∈ FP is called a
vertex of the polyhedronFP if the vectors

a j; j ∈ J0.x/ form a basis ofRn

or equivalently ifAJ0.x/ has rankn. (This
implies|J0.x/| ≥ n.
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The vertexx is callednondegenerateif
LICQ holds, i.e., a j; j ∈ J0.x/ are lin-
ear independent (implying|J0.x/| = n or
equivalentlyAJ0.x/ is non-singular).

Theorem 7.
(a) (Existence and strong duality) If both
P and D are feasible then there exist so-
lutions x of P andy of D. Moreover for
(any of) these solutions we have

cTx = bTy and thus vP = vD :

(b) (Optimality conditions) A pointx ∈

FP is a solution of P if and only if there
is a correspondingy ∈ FD such that the
complementarity conditions

yT.b− Ax/= 0 or y j.b j −aT
j x/= 0;∀ j ∈ J
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hold or equivalently if there existsy j; j ∈

J0.x/, such that KKT conditions are sat-
isfied:∑

j∈J0.x/

y ja j = c; y j ≥ 0; j ∈ J0.x/ :

It appears that normally the solution ofP
arises at a vertex ofFP.

Lemma 2.If the polyhedronFP has a ver-
tex (at least one) andvP < ∞ then the
max valuevP of P is also attained at some
vertex ofFP.

Rem. The Simplex algorithm for solv-
ing P proceeds from vertex to vertex of
FP until the optimality conditions in The-
orem 7(b) are met.
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4.2. Parametric linear programs. In a
parametric LP we have given aC2-matrix
function A.t/ : Rp

→ Rm×n with m rows
aT

j .t/; j ∈ J := {1; : : : ;m} andC2 vector
functionsb.t/ : Rp

→ Rm, c.t/ : Rp
→

Rn and the open parameter setT ⊂ Rp:
For anyt ∈ T we wish to solve the primal
program

(11) P.t/ : max cT.t/x s.t. x ∈ FP.t/

FP.t/ = {x | A.t/x ≤ b.t/}
The corresponding dual reads

(12) D.t/ : min bT.t/y s.t. y ∈ FD

FD = {y | AT.t/y = c.t/; y ≥ 0} :

For t ∈ T andx ∈ FP.t/ the active index
set isJ0.x; t/.
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Linear Production Model, Shadow Prices
Assume a factory producesn different prod-
uctsP1; : : : ; Pn. The production relies on
material coming frommdifferent resources
R1; : : : ; Rm in such a way that the pro-
duction of 1 unit of a productPj requires
ai j units of resourceRi, for i = 1; : : : ;m.

Suppose we can sell our production for
the price ofc j per 1 unit ofPj and thatbi
units of each resourceRi are available for
the total production. How many unitsx j
of each productPj should we produce in
order to maximize the total receipt from
the sales?

An optimal production plan̄x= .x̄1; : : : ; x̄n/
T

corresponds to an optimal solution of the
linear program
(13)
P : max cTx s.t. Ax≤ b; x ≥ 0 :
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HereA = .ai j / is the matrix with the ele-
mentsai j . Let x be a solution with corre-
sponding solutiony of the dual problem
(14)
D : min bTy s.t. ATy ≥ c; y ≥ 0 :

and maximum profit̄z = cTx = bTy.
Could we possibly increase the profit by

spending money on increasing the resource
capacityb and adjusting the production
plan? If so, how much would we be will-
ing to pay for 1 more unit of resourceRi?
Let us increase (for fixedi) the capacity

of Ri from bi to b′
i = bi + t, ȳ is still feasi-

ble. So weak duality gives the following
upper bound on the expected profit:

z′ ≤ b1ȳ1 + : : :+ b′
i ȳi + : : :+ bmȳm

= t · ȳi +

m∑
s=1

bsȳs = t · ȳi + z̄ :
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Accordingly, we would not want to pay
more thant · ȳi for t more units ofRi. In
this sense, the coefficients̄yi of the dual
optimal solutionȳ can be interpreted as
theshadow pricesof the resourcesRi.
Note that for the value functionv.t/ in

dependence from the parametert we find
v.t/− v.0/

t
=

z′ − z
t

≤ yi :

REMARK. The notion of shadow prices
furnishes also an intuitive interpretation
of complementary slackness. If the slack
s̄i = bi −

∑n
j=1ai j x̄ j is strictly positive

at the optimal production̄x, we do not use
resourceRi to its full capacity. Therefore,
we would expect no gain from an increase
of Ri ’s capacity.



27

General case.We come back to the gen-
eral parametric LP in (11). Suppose for
t ∈ T the pointx ∈ FP.x/ is a vertex solu-
tion of P.t/. To find for t neart solutions
x.t/ of P.t/ we have to find feasible solu-
tions x and y of the system of optimality
conditions:

(15) P : AJ0.x;t/
x = bJ0.x;t/

and
(16)
D : AT

J0.x;t/
yJ0.x;t/

= cJ0.x;t/
; yJ0.x;t/

≥ 0

If x is a non-degenerate vertex,i.e., AJ0.x;t/
is nonsingular, this is possible by apply-
ing the IFT to these systems.

Theorem 8.(Local stability result) Letx∈

FP.t/ be a vertex solution of P.t/ with
corresponding dual solutionyJ0.x;t/

such
that
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(1) x is a nondegenerate vertex,i.e., LICQ
holds.

(2) y j > 0; ∀ j ∈ J0.x; t/ (SC)
(According to Theorem 5x is a local min-
imizer of P.t/ of order s= 1.) Then there
exist a neighborhood Ut.t/ and C1-functions
x : Ut.t/→ Rn, yJ0.x;t/

: Ut.t/→ R|J0.x;t/|

such that x.t/ = x, yJ0.x;t/
.t/ = yJ0.x;t/

and for any t∈ Ut.t/ the point x.t/ is a
vertex solution of P.t/ (of order s=1) with
corresponding multiplier yJ0.x;t/

.t/. More-
over for t∈ Ut.t/ the derivatives of x.t/
and the value functionv.t/ = cT.t/x.t/
are given by

∇x.t/= [ AJ0.x;t/
.t/]−1

(
∇bJ0.x;t/

.t/− ∇AJ0.x;t/
.t/x

)
and
∇v.t/ = [∇cJ0.x;t/

.t/]Tx

+[yJ0.x;t/
.t/]T[∇bJ0.x;t/

.t/−∇AT
J0.x;t/

.t/x]



29

Rem. The production model case above
is a special case whereA; c do not de-
pend ont ∈ R (so p = 1) and (for fixed
i ∈ J0.x; t/) 1

dtbJ0.x;t/
.t/ = ei (ei is the

ith unit vector inR|J0.x;t/|) the so that
1
dt
v.t/ = [yJ0.x;t/

.t/]Tei = yi :
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5. APPLICATIONS

5.1. Interior point methods. The basic
idea of the interior point method for solv-
ing a non-parametric program

P : min
x∈Rn

f .x/ s.t. g j.x/≤ 0; j ∈ J

is simply as follows. Consider the per-
turbed KKT system
(17)

F.x; �; �/ :=

∇ f .x/+
∑
j∈J

� j∇g j.x/ = 0

−� j · g j.x/ = �; j ∈ J ;

� j ; −g j.x/ ≥ 0; j ∈ J :

where� > 0 is a perturbation parameter.
The idea is to find solutionsx.�/ and� j.�/

of this system (satisfying−g j.x.�//; � j.�/ >

0) and to let� ↓ 0. We expect thatx.�/
converges to a solutionx of P.
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Under the sufficient optimality conditions
this procedure is well-defined (at least for
small�).

Theorem 9.Let x be a local minimizer of
P such that the sufficient optimality con-
ditions of Theorem 5 are fulfilled with mul-
tiplier � so that� j > 0 holds for all j ∈
J0.x/. Then there exists C1-functions x:
.−�; �/ → Rn, � j : .−�; �/ → R; j ∈

J0.x/ (� > 0) such that x.0/= x; � j.0/=

� j, and x.�/; � j.�/ are locally unique
solutions of (17)

Proof. Follows by applying the IFT to the
equation (17). 2
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5.2. A parametric location problem. We
consider a concrete location problem in
Germany (see [6] for details). Suppose
some good is produced at 5 existing plants
at locationsj

= .sj
1; sj

2/, j = 1; ::;5 (sj
1

longitude,sj
2 latitude in Germany) and a

sixth new plant has to be build at loca-
tion t = .t1; t2/ (to be determined) to sat-
isfy the demands ofVi units of goods in
99 townsi at location`i

= .`i
1; `

i
2/, i =

1; : : : ;99. Suppose (for simplicity) that
the transportation costci j from plant j to
town i (per unit of the good) is (propor-
tionally to) the Euclidian distance

ci j =

√
.sj

1 − `i
1/

2 + .sj
2 − `i

2/
2; j = 1; ::;5;

ci6.t/ =

√
.t1 − `i

1/
2 + .t2 − `i

2/
2; ∀i:

Suppose further that the total demandV =∑
i Vi will be produced in the 6 plants with
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a production ofp j units of the good in
plant j where

p1 = V
10
100

; p2 = V
30
100

; p3 = V
10
100

;

p4 = V
15
100

; = p5 = V
15
100

; p6 = V
20
100

:

The problem now is to find the location
t = .t1; t2/ of the new plant such that the
total transportation costs are minimized.
For any fixed locationt the optimal trans-
portation strategy is given by the solution
of the transportation problem (standard LP),

P.t/ : := min
yi j

5∑
j=1

∑
i

ci j yi j +

∑
i

ci6.t/yi6 s.t.∑
i

yi j = p j; j = 1; ::;6 ;∑
j

yi j = Vi; i = 1; ::;99 :
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Hereyi j is the number of units of the good
to be transported from plantj to town i.
The problem is now to find a (global or
local) minimizer ofv.t/. Most local mini-
mization algorithm are based on the com-
putation of the (negative) gradient of the
objective function at some actual pointt =

tk, d = −∇v.tk/.
Suppose thatyk

i j is the vertex solution of

P.tk/. Then by the results of Section 4.2
the gradient can be computed via the for-
mula

∇v.tk/ = ∇tL.y
k; tk; �k/ =

99∑
i=1

yk
i6

1√
.t1 − `i

1/
2 + .t2 − `i

2/
2

(
.t1 − `i

1/

.t2 − `i
2/

)
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6. PATHFOLLOWING IN PRACTICE

We shortly discuss how a solution curve
.x.t/; t/ of a one-parametric equation

F.x; t/= 0 F : Rn
×R → Rn; t ∈ R;

can be followed numerically.
The basic idea is to use some sort of New-

ton procedure. Recall that the classical
Newton method is the most fundamental
approach for solving a system ofn equa-
tions inn unknowns:

F.x/ = 0 F : Rn
→ Rn :

The famous Newton iteration for comput-
ing a solution is to start with some (ap-
propriate) starting pointx0 and to iterate
according to

xk+1
= xk

− [∇F.xk/]−1F.xk/; k = 0;1; :::

It is well-known that this iteration con-
verges quadratically to a solutionx of F.x/=

0 if
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• x0 is chosen close enough tox and if
• ∇F.x/ is a non-singular matrix.

The simplest way to follow approximately
a solution curvex.t/ of F.x; t/ = 0, i.e.,
F.x.t/; t/ = 0, on an intervalt ∈ [a;b] is
to discretize [a;b] by

t` = a+ `
b− a

N
; ` = 0; : : : ; N

(for someN ∈ N) and to compute for any
` = 0; : : : ; N, a solutionx` = x.t`/ of
F.x; t`/ = 0 by a Newton iteration,

xk+1
`

= xk
`− [∇F.xk

`; t`/]
−1F.xk

`; t`/; k = 0;1; :::

starting withx0
`

= x`−1 (for ` ≥ 1).
We refer the reader to the book [1] for

detailse.g., on:
• How to perform pathfollowing efficiently?
• How to deal with branching points.x; t/

where different solution curves inter-
sect?
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7. GENERAL PARAMETRIC

PROGRAMMING

In the next sections we analyze the para-
metric behavior under weaker assumptions
where the Implicit Function Theorem is
no more applicable. We try to keep the
introduction of ’new’ concepts to a mini-
mum and to motivate the results by exam-
ples.

Consider again the parametric optimiza-
tion problem

(18) P.t/ : min
x∈Rn

f .x; t/ s.t. x ∈ F.t/

F.t/ := {x ∈ Rn
| g j.x; t/ ≤ 0; j ∈ J} ;

depending on the parametert ∈ T, where
T ⊂ Rp is an open parameter set. Again
J := {1; : : : ;m}. All functions f; g j are
assumed to be (at least) continuous every-
where.
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Notation: Let v.t/ = minx∈F .t/ f .x; t/
denote the minimal value ofP.t/ (v.t/ =

∞ if F.t/ = ∅) and let S.t/ the set of
(global) minimizers. The mappingsF :
T ⇒ Rn andS: T ⇒ Rn are so-called set-
valued mappings.

Problem of parametric optimization: How
do the value functionv.t/ and the map-
pingsF.t/, S.t/ change witht. (Continu-
ously, smoothly?)

Definition 1. Let v : T → R∞ be given,
R∞ = R ∪ {−∞;∞}.
(a) The functionv is calledupper semi-
continuous(usc) att ∈ T if for any " > 0
there exists� > 0 such that

v.t/ ≤ v.t/+ " for all ‖t − t‖ < � :

(b) The functionv is called lower semi-
continuous(lsc) att ∈ T if for any " > 0
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there exists� > 0 such that

v.t/ ≥ v.t/− " for all ‖t − t‖ < � :

We shall see that the lower- and upper
semicontinuity of the value functionv.t/
depend on different assumptions. Obvi-
ously to assure the lower semicontinuity
of v at t the feasible setF.t/ should not
become essentially larger by a small per-
turbation t of t and to assure the upper
semicontinuity ofv the setF.t/ should
not become essentially smaller after a per-
turbation. To avoid an ’explosion’ ofF.t/
we will need some compactness assump-
tions for F.t/ and to prevent an ’implo-
sion’ a Constraint Qualification will be needed.
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Definition 2. Let the set valued mapping
F : T ⇒ Rn be given.

(a) F is calledclosedat t ∈ T if for any
sequencestl ; xl , l ∈ N, with tl → t; xl ∈

F.tl / the conditionxl → x implies x ∈

F.t/.

(b) (no explosion of F.t/ after perturba-
tion of t = t) F is calledouter semicon-
tinuous(osc) att ∈ T if for any sequences
tl ; xl , l ∈ N with tl → t; xl ∈ F.tl / there
existsxl ∈ F.t/ such that‖xl − xl‖ → 0
for l → ∞.

(c) (no implosion of F.t/ after perturba-
tion of t = t) F is inner semicontinuous
(isc) at t ∈ T if for any x ∈ F.t/ and se-
quencetl → t there exists a sequencexl
such thatxl ∈ F.tl /, for l large enough,
and‖xl − x‖ → 0.
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The mappingF is called continuous att
if it is both osc and isc att

Ex.8Show forF.t/= {x∈ Rn
| g j.x; t/≤

0; j ∈ J}; t ∈ T (g j continuous) that the
mappingF : T ⇒ Rn is closed onT.

Lower semicontinuity of v.t/. To as-
sure lower semicontinuity ofv at t we (min-
imally) need compactness ofF.t/ (even
in the case thatF.t/ behaves continuously).
Ex.9 (Linear problem,F.t/ ≡ F constant
not bounded andv is not lsc.) For the prob-
lem minx2 − tx1 s.t. x1 ≥ 0; x2 ≥ 0 we
find

v.t/ =

{
0 for t ≤ 0

−∞ for t > 0
and

S.t/ =


{.0;0/} for t < 0

{.x1;0/ | x1 ≥ 0} for t = 0
∅ for t > 0
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We even need the following stronger con-
dition

LC. (local compactnessof F at t) There
exists" > 0 and a compact setC0 such
that ⋃

‖t−t‖≤"

F.t/ ⊂ C0 :

Without this condition LC the lower semi-
continuity ofv is not assured in general.
Ex.10 (F.t/; S.t/ compact, LC does not
hold andv is not lsc andF.t/ is not osc at
t.) Consider the problem

min x2 − x1 s.t. x2 ≤ 2tx1 −
1
2
;

x2 ≤ −tx1; x2 ≥ x1.t/ ;

with a functionx1.t/; x1.0/= −1; x1.t/=

−
1
4 for |t| ≥ 2 (sketch the problem as an

Ex.) we find with continuous functions
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vl .t/; x.t/:

v.t/=


vl .t/ for t ≤ 0

−
1
2 −

√
ln.2/ for t = 0

−
1
4.1+

1
t / for t > 0

and

S.t/ =

{
{.x.t/} for t ≤ 0

{
1
4.

1
t ;−1/} for t > 0 :

The lower semicontinuity ofv depends on
the following technical outer semiconti-
nuity and compactness condition saying
that fort neart at least one pointxt ∈ S.t/
can be approached by elements in a com-
pact subset ofF.t/.

AL. There exists a neighborhoodUt.t/ of
t and a compact setC ⊂ Rn such that for
all t ∈ Ut.t/ with F.t/ 6= ∅ there is some
xt ∈ S.t/ and somext ∈ F.t/∩ C satisfy-
ing ‖xt − xt‖ → 0 for t → t.
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Lemma 3.
(a) Let AL be satisfied att. Thenv is lsc
at t.

(b) Let the local compactness condition
LC be fulfilled att. Then AL is satisfied (
i.e., v is lsc att).

Ex.11 Let the local compactness condi-
tion LC be fulfilled att then the mapping
F is osc att.

The convex case.By Ex.10 in the gen-
eral (non-convex) case the condition∅ 6=

F.t/ compact is not sufficient to assure
the outer semicontinuity ofF and the con-
dition ∅ 6= S.t/ compact does not imply
the lower semicontinuity ofv. Under the
following convexity assumptions the situ-
ation is changed.
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Recall that a functionf .x/, f : Rn
→ R

is called convex if for anyx1; x2 ∈ Rn and
� ∈ [0;1] it follows

f ..1− �/x1+ �x2/≤ .1− �/ f .x1/+ � f .x2/ :

AC. For each (fixed)t ∈ T the functions
g j.x; t/ are convex inx for all j ∈ J.

AC0. In addition to AC, for each (fixed)
t ∈ T the function f .x; t/ is convex inx,
(i.e., the problemsP.t/ are convex pro-
grams).

Lemma 4.Let the convexity condition AC
hold and assume∅ 6= F.t/ is bounded (com-
pact). Then the local compactness condi-
tion LC is satisfied. In particular F is osc
(cf. Ex.11) andv is lsc att (cf. Lemma 3).

In the convex case even the boundedness
of S.t/ is sufficient to assure thatv is lsc
at t.
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Theorem 10.Let the convexity assump-
tion AC0 hold and let S.t/ be nonempty
and bounded (compact). Thenv is lsc at
t.

The upper semicontinuity of v.t/. The
upper semicontinuity ofv depends on a
different assumption. The local compact-
ness condition LC is not sufficient (and
not necessary).
Ex.12For the problem
minx1 s.t. x2

1 + x2
2 ≤ −t , which obvi-

ously satisfies LC we find

F.t/=

 {x2
1 + x2

2 ≤ |t|} for t < 0
{.0;0/} for t = 0

∅ for t > 0
and

v.t/ =

{
t for t ≤ 0

∞ for t > 0



47

The problem here is that the mappingF
is not isc att. To assure the upper semi-
continuity of v at t we only need an in-
ner semicontinuity condition at one point
x ∈ S.t/.

AU. There exist a minimizerx ∈ S.t/ and
a neighborhoodUt.t/ of t such that for all
t ∈ Ut.t/ there is somext ∈ F.t/ satisfy-
ing ‖xt − x‖ → 0 for t → t.

Lemma 5.Let AU be fulfilled att. Thenv
is usc att.

A natural condition to force the assump-
tion AU is a so-calledConstraint Qualifi-
cation(CQ).

Definition 3.TheConstraint Qualification
CQ is said to hold at.x; t/ with x ∈ F.t/
if there is a sequence x� → x such that

g j.x�; t/ < 0 holds for all j∈ J :
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Corollary 1. Let CQ be satisfied at.x; t/
for (at least) one pointx ∈ S.t/. Then the
condition AU is satisfied,i.e., v is usc at
t.

Ex.13 Let CQ hold at.x; t/, x ∈ F.t/.
Then there is a neighborhoodUt.t/ of t
such thatF.t/ is nonempty for allt ∈ Ut.t/.
If CQ holds at.x; t/ for each pointx ∈

F.t/ thenF is isc att.

The behavior ofS(t). Let us shortly study
the continuity properties of the mapping
S.t/.
Obviously the inner semicontinuity ofS

is stronger than the condition AU. So ifS
is isc the functionv is usc (see Lemma 5).
However the inner semicontinuity ofS.t/
is a very ’strong’ condition. Even if the
local compactness condition LC and the
Constraint Qualification hold it need not
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to be satisfied. We give an example.

Ex. 14 (LC and CQ holds butS is not
isc.) min x2− tx1 s.t. |x1| ≤ 1; |x2| ≤ 1:
Then neart = 0 we obtain

S.t/=


{.−1;−1/} for t < 0

{.x1;−1/ | |x1| ≤ 1} for t = 0
{.1;−1/} for t > 0

and

v.t/ = −1− |t| :

We now discuss the closedness and the
outer semicontinuity ofS.

Ex.15Let CQ be satisfied at.x; t/ for (at
least) one pointx ∈ S.t/. ThenSis closed
at t
Ex. 16 Let S.t/ be compact and assume
∅ 6= S.t/ for a neighborhoodUt.t/ of t
andS is osc att. Then AL holds implying
thatv is lsc att (see Lemma 3).
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Lemma 6.Let LC be satisfied att and let
CQ hold at .x; t/ for (at least) onex ∈

S.t/. Then there exists a neighborhood
Ut.t/ of t such that for all t∈ Ut.t/ the set
S.t/ is nonempty and compact. Moreover
the mapping S is osc att.
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