
How to implement HDG Methods Efficiently

Abdullah Ali Sivas

December 22, 2017

Table of contents

1. What is already around?

2. What did I do?

1

What is already around?

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,

preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU

support

SLEPc: Parallel library for the solution of large sparse eigenproblems

(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering

(p)BLAS, (SCA)LAPACK: Linear algebra routines

hypre: Parallel library of high performance preconditioners

SUNDIALS: Parallel library of ODE solvers

SuiteSparse: GraphBLAS, LU, Cholesky, QR, Matrix reorderings,...

MATLAB uses many parts of this package.

2

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,

preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU

support

SLEPc: Parallel library for the solution of large sparse eigenproblems

(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering

(p)BLAS, (SCA)LAPACK: Linear algebra routines

hypre: Parallel library of high performance preconditioners

SUNDIALS: Parallel library of ODE solvers

SuiteSparse: GraphBLAS, LU, Cholesky, QR, Matrix reorderings,...

MATLAB uses many parts of this package.

2

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,

preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU

support

SLEPc: Parallel library for the solution of large sparse eigenproblems

(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering

(p)BLAS, (SCA)LAPACK: Linear algebra routines

hypre: Parallel library of high performance preconditioners

SUNDIALS: Parallel library of ODE solvers

SuiteSparse: GraphBLAS, LU, Cholesky, QR, Matrix reorderings,...

MATLAB uses many parts of this package.

2

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,

preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU

support

SLEPc: Parallel library for the solution of large sparse eigenproblems

(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering

(p)BLAS, (SCA)LAPACK: Linear algebra routines

hypre: Parallel library of high performance preconditioners

SUNDIALS: Parallel library of ODE solvers

SuiteSparse: GraphBLAS, LU, Cholesky, QR, Matrix reorderings,...

MATLAB uses many parts of this package.

2

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,

preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU

support

SLEPc: Parallel library for the solution of large sparse eigenproblems

(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering

(p)BLAS, (SCA)LAPACK: Linear algebra routines

hypre: Parallel library of high performance preconditioners

SUNDIALS: Parallel library of ODE solvers

SuiteSparse: GraphBLAS, LU, Cholesky, QR, Matrix reorderings,...

MATLAB uses many parts of this package.

2

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,

preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU

support

SLEPc: Parallel library for the solution of large sparse eigenproblems

(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering

(p)BLAS, (SCA)LAPACK: Linear algebra routines

hypre: Parallel library of high performance preconditioners

SUNDIALS: Parallel library of ODE solvers

SuiteSparse: GraphBLAS, LU, Cholesky, QR, Matrix reorderings,...

MATLAB uses many parts of this package.

2

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,

preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU

support

SLEPc: Parallel library for the solution of large sparse eigenproblems

(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering

(p)BLAS, (SCA)LAPACK: Linear algebra routines

hypre: Parallel library of high performance preconditioners

SUNDIALS: Parallel library of ODE solvers

SuiteSparse: GraphBLAS, LU, Cholesky, QR, Matrix reorderings,...

MATLAB uses many parts of this package.

2

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,

preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU

support

SLEPc: Parallel library for the solution of large sparse eigenproblems

(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering

(p)BLAS, (SCA)LAPACK: Linear algebra routines

hypre: Parallel library of high performance preconditioners

SUNDIALS: Parallel library of ODE solvers

SuiteSparse: GraphBLAS, LU, Cholesky, QR, Matrix reorderings,...

MATLAB uses many parts of this package.
2

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid

dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has

full restart support

FEniCS: open source, python based, well-developed, easy to use, includes

DG and a high performance version

DEAL.II: open source, well-developed, includes HDG and many others

MFEM: open source, rather recent, HDG is being developed(by us),

modular approach with emphasis on exascale computing

FreeFEM++: open source, developed on and off, has own language, has

good scalability results, includes RT0 and DG

3

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid

dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has

full restart support

FEniCS: open source, python based, well-developed, easy to use, includes

DG and a high performance version

DEAL.II: open source, well-developed, includes HDG and many others

MFEM: open source, rather recent, HDG is being developed(by us),

modular approach with emphasis on exascale computing

FreeFEM++: open source, developed on and off, has own language, has

good scalability results, includes RT0 and DG

3

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid

dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has

full restart support

FEniCS: open source, python based, well-developed, easy to use, includes

DG and a high performance version

DEAL.II: open source, well-developed, includes HDG and many others

MFEM: open source, rather recent, HDG is being developed(by us),

modular approach with emphasis on exascale computing

FreeFEM++: open source, developed on and off, has own language, has

good scalability results, includes RT0 and DG

3

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid

dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has

full restart support

FEniCS: open source, python based, well-developed, easy to use, includes

DG and a high performance version

DEAL.II: open source, well-developed, includes HDG and many others

MFEM: open source, rather recent, HDG is being developed(by us),

modular approach with emphasis on exascale computing

FreeFEM++: open source, developed on and off, has own language, has

good scalability results, includes RT0 and DG

3

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid

dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has

full restart support

FEniCS: open source, python based, well-developed, easy to use, includes

DG and a high performance version

DEAL.II: open source, well-developed, includes HDG and many others

MFEM: open source, rather recent, HDG is being developed(by us),

modular approach with emphasis on exascale computing

FreeFEM++: open source, developed on and off, has own language, has

good scalability results, includes RT0 and DG

3

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid

dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has

full restart support

FEniCS: open source, python based, well-developed, easy to use, includes

DG and a high performance version

DEAL.II: open source, well-developed, includes HDG and many others

MFEM: open source, rather recent, HDG is being developed(by us),

modular approach with emphasis on exascale computing

FreeFEM++: open source, developed on and off, has own language, has

good scalability results, includes RT0 and DG

3

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid

dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has

full restart support

FEniCS: open source, python based, well-developed, easy to use, includes

DG and a high performance version

DEAL.II: open source, well-developed, includes HDG and many others

MFEM: open source, rather recent, HDG is being developed(by us),

modular approach with emphasis on exascale computing

FreeFEM++: open source, developed on and off, has own language, has

good scalability results, includes RT0 and DG 3

Few (unavailable) MATLAB based HDG packages

Quick google search reveals a lot of papers with sentences like;

”We have developed our MATLAB code on top iFEM package...”

”We used our MATLAB code for these tests...”

”We have implemented this method in MATLAB as a proof of concept...”

None available publicly. Another common point, small problem sizes

4

Few (unavailable) MATLAB based HDG packages

Quick google search reveals a lot of papers with sentences like;

”We have developed our MATLAB code on top iFEM package...”

”We used our MATLAB code for these tests...”

”We have implemented this method in MATLAB as a proof of concept...”

None available publicly. Another common point, small problem sizes

4

Few (unavailable) MATLAB based HDG packages

Quick google search reveals a lot of papers with sentences like;

”We have developed our MATLAB code on top iFEM package...”

”We used our MATLAB code for these tests...”

”We have implemented this method in MATLAB as a proof of concept...”

None available publicly. Another common point, small problem sizes

4

Few (unavailable) MATLAB based HDG packages

Quick google search reveals a lot of papers with sentences like;

”We have developed our MATLAB code on top iFEM package...”

”We used our MATLAB code for these tests...”

”We have implemented this method in MATLAB as a proof of concept...”

None available publicly. Another common point, small problem sizes

4

Few (unavailable) MATLAB based HDG packages

Quick google search reveals a lot of papers with sentences like;

”We have developed our MATLAB code on top iFEM package...”

”We used our MATLAB code for these tests...”

”We have implemented this method in MATLAB as a proof of concept...”

None available publicly. Another common point,

small problem sizes

4

Few (unavailable) MATLAB based HDG packages

Quick google search reveals a lot of papers with sentences like;

”We have developed our MATLAB code on top iFEM package...”

”We used our MATLAB code for these tests...”

”We have implemented this method in MATLAB as a proof of concept...”

None available publicly. Another common point, small problem sizes

4

Two available MATLAB based HDG packages

Deeper look reveals,

HDG3D - http://www.math.udel.edu/˜fjsayas/HDG3D/

I based my implementation upon this one.

FESTUNG - https://github.com/FESTUNG/project

Only implements advection

Both implement LDG-H

5

Two available MATLAB based HDG packages

Deeper look reveals,

HDG3D - http://www.math.udel.edu/˜fjsayas/HDG3D/

I based my implementation upon this one.

FESTUNG - https://github.com/FESTUNG/project

Only implements advection

Both implement LDG-H

5

Two available MATLAB based HDG packages

Deeper look reveals,

HDG3D - http://www.math.udel.edu/˜fjsayas/HDG3D/

I based my implementation upon this one.

FESTUNG - https://github.com/FESTUNG/project

Only implements advection

Both implement LDG-H

5

Two available MATLAB based HDG packages

Deeper look reveals,

HDG3D - http://www.math.udel.edu/˜fjsayas/HDG3D/

I based my implementation upon this one.

FESTUNG - https://github.com/FESTUNG/project

Only implements advection

Both implement LDG-H

5

What did I do?

Started from HDG3D to avoid

• creating a mesh structure

• writing quadrature rules

• implementing basis functions

6

Mesh maketh the FEM package

T =

coordinates: [48x3 double]

elements: [108x4 double]

dirichlet: [36x3 double]

neumann: [48x3 double]

faces: [258x4 double]

dirfaces: [1x36 double]

neufaces: [1x48 double]

facebyele: [108x4 double]

orientation: [108x4 double]

perm: [108x4 double]

volume: [108x1 double]

area: [258x1 double]

normals: [108x12 double]

7

Quadratures - Volume Integrals

On the reference element K̂ ,∫
K̂

φ =
1

6

∑
q

ωqφ(pq)

Given tetrahedron (v1, v2, v3, v4), transformation from the reference

element to a general element,

FK (x) = BKx + v1

On general tetrahedra∫
K

φ = |BK |
∫
K̂

φ ◦ FK = |K |
∑
q

ωqφ(FK (pq))

Construct FK s.t. |BK | = 6|K |.

8

Quadratures - Volume Integrals

On the reference element K̂ ,∫
K̂

φ =
1

6

∑
q

ωqφ(pq)

Given tetrahedron (v1, v2, v3, v4), transformation from the reference

element to a general element,

FK (x) = BKx + v1

On general tetrahedra∫
K

φ = |BK |
∫
K̂

φ ◦ FK = |K |
∑
q

ωqφ(FK (pq))

Construct FK s.t. |BK | = 6|K |.

8

Quadratures - Volume Integrals

On the reference element K̂ ,∫
K̂

φ =
1

6

∑
q

ωqφ(pq)

Given tetrahedron (v1, v2, v3, v4), transformation from the reference

element to a general element,

FK (x) = BKx + v1

On general tetrahedra∫
K

φ = |BK |
∫
K̂

φ ◦ FK = |K |
∑
q

ωqφ(FK (pq))

Construct FK s.t. |BK | = 6|K |.

8

Quadratures - Volume Integrals

On the reference element K̂ ,∫
K̂

φ =
1

6

∑
q

ωqφ(pq)

Given tetrahedron (v1, v2, v3, v4), transformation from the reference

element to a general element,

FK (x) = BKx + v1

On general tetrahedra∫
K

φ = |BK |
∫
K̂

φ ◦ FK = |K |
∑
q

ωqφ(FK (pq))

Construct FK s.t. |BK | = 6|K |.

8

Quadratures - Volume Integrals

An example,∫
K

f φ = 6|K |
∫
K̂

φ ◦ FK = |K |
∑
q

f (FK (pq))ωqφ(FK (pq))

Rewrite in more MATLAB friendly notation

volT �
(
(w � P)T f (X ,Y ,Z)

)

where (uT � A)ij = ujAij and (u � A)ij = uiAij .

9

Quadratures - Volume Integrals

An example,∫
K

f φ = 6|K |
∫
K̂

φ ◦ FK = |K |
∑
q

f (FK (pq))ωqφ(FK (pq))

Rewrite in more MATLAB friendly notation

volT �
(
(w � P)T f (X ,Y ,Z)

)
where (uT � A)ij = ujAij

and (u � A)ij = uiAij .

9

Quadratures - Volume Integrals

An example,∫
K

f φ = 6|K |
∫
K̂

φ ◦ FK = |K |
∑
q

f (FK (pq))ωqφ(FK (pq))

Rewrite in more MATLAB friendly notation

volT �
(
(w � P)T f (X ,Y ,Z)

)
where (uT � A)ij = ujAij and (u � A)ij = uiAij .

9

Quadratures - Volume Integrals

volT �
(
(w � P)T f (X ,Y ,Z)

)
P=basisf3d(2*xhat-1,2*yhat-1,2*zhat-1,k);

wP=bsxfun(@times,weights,P);

Ints=bsxfun(@times,T.volume’,wP’*f(x,y,z));

Highlights: bsxfun, dot product *

10

Quadratures - Face Integrals

On the reference element F̂ ,∫
F̂

φ =
1

2

∑
q

ωqφ(pq)

Given triangle e = (w1,w2,w3), parametrization from the reference face

to a general face,

ϕ(s, t) = s(w2 − w1) + t(w3 − w1) + w1, ϕ : F̂ → e, (s, t) ∈ F̂

Note that, |∂sϕ× ∂tϕ| = 2|e|. On general triangle

∫
e

φ = 2|e|
∫
K̂

φ ◦ ϕ = |e|
∑
q

ωqφ(ϕ(pq)).

11

Quadratures - Face Integrals

On the reference element F̂ ,∫
F̂

φ =
1

2

∑
q

ωqφ(pq)

Given triangle e = (w1,w2,w3), parametrization from the reference face

to a general face,

ϕ(s, t) = s(w2 − w1) + t(w3 − w1) + w1, ϕ : F̂ → e, (s, t) ∈ F̂

Note that, |∂sϕ× ∂tϕ| = 2|e|. On general triangle

∫
e

φ = 2|e|
∫
K̂

φ ◦ ϕ = |e|
∑
q

ωqφ(ϕ(pq)).

11

Quadratures - Face Integrals

On the reference element F̂ ,∫
F̂

φ =
1

2

∑
q

ωqφ(pq)

Given triangle e = (w1,w2,w3), parametrization from the reference face

to a general face,

ϕ(s, t) = s(w2 − w1) + t(w3 − w1) + w1, ϕ : F̂ → e, (s, t) ∈ F̂

Note that, |∂sϕ× ∂tϕ| = 2|e|. On general triangle

∫
e

φ = 2|e|
∫
K̂

φ ◦ ϕ = |e|
∑
q

ωqφ(ϕ(pq)).

11

Quadrature - Face Integrals

An example, < (hK)−1σκλ, µ >e ,

σκ

hK

∫
e

λµ = 2σκ

∫
F

λ ◦ ϕµ ◦ ϕ =
∑
q

ωqλ(ϕ(pq))µ(ϕ(pq))

Rewrite in more MATLAB friendly notation, but with a loop over faces,

κ

4∑
l=1

σT
l ⊗

(
(ω � Pl)

T Pl

)
, σT

l = row(σ, l)

12

Quadrature - Face Integrals

κ

4∑
l=1

σT
l ⊗

(
(ω � Pl)

T Pl

)
, σT

l = row(σ, l)

d=basisf2d(2*s-1,2*t-1,k);

dweights=bsxfun(@times,d,weights);

dwd=dweights’*d;

HDGInterface=zeros(4*d2,4*d2,Nelts);

for l=1:4

HDGInterface(block2(l),block2(l),:)=reshape(kron(sigmakappa(l,:),dwd),...

[d2,d2,Nelts]);

end

Highlights: kron, :

13

Quadrature - Face Integrals

There are two other face integrals, namely,

< κ∇u · n, µ >e − < (hK)−1σκu, µ >e

and

− < u, κ∇v · n >∂K − < κ∇u · n, v >∂K + < (hK)−1σκu, v >∂K .

First one: HDGMixedDiffusion

Second one: HDGDiffusion

Both are similar to above example, just more complicated.

14

Local Solvers - Equation

Consider reaction-diffusion equation with all Dirichlet b.c.s,

u − κ∆u = f , in Ω

u = gD , on ∂Ω

15

Local Solvers - Weak Form

Find (u, λ) ∈ Vh ×Mh s.t. ∀(v , µ) ∈ Vh ×Mh,

(κ∇u,∇v)Ω− < u, κ∇v · n >∂Ω+ < λ, κ∇v · n >∂Ω

− < α

hK
κλ, v >∂Ω+ < −κ∇u · ~n +

α

hK
κu, v >∂Ω +(u, v)Ω = (f , v)Ω,

and,

−
(
< −κ∇u · ~n +

α

hK
κu, µ >∂Ω− <

α

hK
κλ, µ >∂Ω

)
= 0.

16

Local Solvers - Implementation

% Create the element matrices

[HDGDiffusion,HDGMixedDiff,HDGInterface]=...

matricesFace(T,sigma,kappa,k,formulas{3});

diffusion=Diffusion(T,k,kappa,formulas{1});

mass=MassMatrix(T,k,formulas{1});

diffusion, mass and HDGDiffusion are of size neu × neu × nel ,

HDGMixedDiff is of size 4nfu × neu × nel and HDGInterface is of size

4nfu × 4nfu × nel .

17

Local Solvers - Implementation

% Create the element matrices

[HDGDiffusion,HDGMixedDiff,HDGInterface]=...

matricesFace(T,sigma,kappa,k,formulas{3});

diffusion=Diffusion(T,k,kappa,formulas{1});

mass=MassMatrix(T,k,formulas{1});

diffusion, mass and HDGDiffusion are of size neu × neu × nel ,

HDGMixedDiff is of size 4nfu × neu × nel and HDGInterface is of size

4nfu × 4nfu × nel .

17

Local Solvers - Implementation

% Create the element matrices

[HDGDiffusion,HDGMixedDiff,HDGInterface]=...

matricesFace(T,sigma,kappa,k,formulas{3});

diffusion=Diffusion(T,k,kappa,formulas{1});

mass=MassMatrix(T,k,formulas{1});

diffusion, mass and HDGDiffusion are of size neu × neu × nel ,

HDGMixedDiff is of size 4nfu × neu × nel

and HDGInterface is of size

4nfu × 4nfu × nel .

17

Local Solvers - Implementation

% Create the element matrices

[HDGDiffusion,HDGMixedDiff,HDGInterface]=...

matricesFace(T,sigma,kappa,k,formulas{3});

diffusion=Diffusion(T,k,kappa,formulas{1});

mass=MassMatrix(T,k,formulas{1});

diffusion, mass and HDGDiffusion are of size neu × neu × nel ,

HDGMixedDiff is of size 4nfu × neu × nel and HDGInterface is of size

4nfu × 4nfu × nel .

17

Local Solvers - Implementation

% A = [[UV LV] b = [f

% [UM LM]], 0]

UV = mass + diffusion + HDGDiffusion;

UM = HDGMixedDiff;

LV = permute(UM,[2 1 3]);

LM = HDGInterface;

f=testElem(f,T,k,formulas{1});

18

Local Solvers - Implementation

for i=1:Nelts

A(:,:,i)= LM(:,:,i)-UM(:,:,i)*inv(UV(:,:,i))*LV(:,:,i);

b(:,i) = -UM(:,:,i)*inv(UV(:,:,i))*f(:,i);

end

Loop over elements? Isn’t it bad? Yes.

Easily parallelizable. How? Write parfor instead of for.

19

Local Solvers - Implementation

for i=1:Nelts

A(:,:,i)= LM(:,:,i)-UM(:,:,i)*inv(UV(:,:,i))*LV(:,:,i);

b(:,i) = -UM(:,:,i)*inv(UV(:,:,i))*f(:,i);

end

Loop over elements? Isn’t it bad?

Yes.

Easily parallelizable. How? Write parfor instead of for.

19

Local Solvers - Implementation

for i=1:Nelts

A(:,:,i)= LM(:,:,i)-UM(:,:,i)*inv(UV(:,:,i))*LV(:,:,i);

b(:,i) = -UM(:,:,i)*inv(UV(:,:,i))*f(:,i);

end

Loop over elements? Isn’t it bad? Yes.

Easily parallelizable. How? Write parfor instead of for.

19

Local Solvers - Implementation

for i=1:Nelts

A(:,:,i)= LM(:,:,i)-UM(:,:,i)*inv(UV(:,:,i))*LV(:,:,i);

b(:,i) = -UM(:,:,i)*inv(UV(:,:,i))*f(:,i);

end

Loop over elements? Isn’t it bad? Yes.

Easily parallelizable. How?

Write parfor instead of for.

19

Local Solvers - Implementation

for i=1:Nelts

A(:,:,i)= LM(:,:,i)-UM(:,:,i)*inv(UV(:,:,i))*LV(:,:,i);

b(:,i) = -UM(:,:,i)*inv(UV(:,:,i))*f(:,i);

end

Loop over elements? Isn’t it bad? Yes.

Easily parallelizable. How? Write parfor instead of for.

19

Assembly

% Assemble the system

A=sparse(R(:),C(:),A(:));

phif=accumarray(RowsRHS,b(:));

uhatD=BC3d(uD,T,k,formulas{3}); % Dirichlet B.C.

%Dirichlet BC

Uhatv=zeros(d2*Nfaces,1);

Uhatv(dirfaces)=uhatD; %uhat stored as a vector: d2*Nfaces

Highlights: sparse and accumarray

20

Assembly

% Assemble the system

A=sparse(R(:),C(:),A(:));

phif=accumarray(RowsRHS,b(:));

uhatD=BC3d(uD,T,k,formulas{3}); % Dirichlet B.C.

%Dirichlet BC

Uhatv=zeros(d2*Nfaces,1);

Uhatv(dirfaces)=uhatD; %uhat stored as a vector: d2*Nfaces

Highlights: sparse and accumarray

20

Assembly

%RHS

rhs=zeros(d2*Nfaces,1);

rhs(free)=phif(free);

rhs=rhs-A(:,dirfaces)*Uhatv(dirfaces);

% Solve the system

Uhatv(free)=A(free,free)\rhs(free);

Uhat=reshape(Uhatv,d2,Nfaces);

21

Assembly

% Reconstruct the solution

faces=T.facebyele’; faces=faces(:);

uhhataux=reshape(Uhat(:,faces),[4*d2,Nelts]);

Uh=zeros(d3,Nelts);

for K=1:Nelts

Uh(:,K)=inv(UV(:,:,K))*(f(:,K)-LV(:,:,K)*uhhataux(:,K));

end

Loop over elements again, but it is not a problem.

22

Demonstration

This slide is left blank intentionally.

23

Thanks for listening!

Any questions?

24

	What is already around?
	What did I do?

