How to implement HDG Methods Efficiently

Abdullah Ali Sivas
December 22, 2017

Table of contents

1. What is already around?

2. What did | do?

What is already around?

General Scientific Computing Packages

Some tools that are commonly used

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,

preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU
support

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,
preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU
support

SLEPc: Parallel library for the solution of large sparse eigenproblems

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,
preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU
support

SLEPc: Parallel library for the solution of large sparse eigenproblems

(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,
preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU
support

SLEPc: Parallel library for the solution of large sparse eigenproblems
(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering

(p)BLAS, (SCA)LAPACK: Linear algebra routines

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,
preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU
support

SLEPc: Parallel library for the solution of large sparse eigenproblems
(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering
(p)BLAS, (SCA)LAPACK: Linear algebra routines

hypre: Parallel library of high performance preconditioners

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,
preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU
support

SLEPc: Parallel library for the solution of large sparse eigenproblems
(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering
(p)BLAS, (SCA)LAPACK: Linear algebra routines

hypre: Parallel library of high performance preconditioners

SUNDIALS: Parallel library of ODE solvers

General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,
preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU
support

SLEPc: Parallel library for the solution of large sparse eigenproblems
(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering
(p)BLAS, (SCA)LAPACK: Linear algebra routines

hypre: Parallel library of high performance preconditioners
SUNDIALS: Parallel library of ODE solvers

SuiteSparse: GraphBLAS, LU, Cholesky, QR, Matrix reorderings,...
MATLAB uses many parts of this package.

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid
dynamics, includes DG. Open source

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid
dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has
full restart support

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid
dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has
full restart support

FEniCS: open source, python based, well-developed, easy to use, includes
DG and a high performance version

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid
dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has
full restart support

FEniCS: open source, python based, well-developed, easy to use, includes
DG and a high performance version

DEAL.IIl: open source, well-developed, includes HDG and many others

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid
dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has
full restart support

FEniCS: open source, python based, well-developed, easy to use, includes
DG and a high performance version

DEAL.IIl: open source, well-developed, includes HDG and many others

MFEM: open source, rather recent, HDG is being developed(by us),
modular approach with emphasis on exascale computing

Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid
dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has
full restart support

FEniCS: open source, python based, well-developed, easy to use, includes
DG and a high performance version

DEAL.IIl: open source, well-developed, includes HDG and many others

MFEM: open source, rather recent, HDG is being developed(by us),
modular approach with emphasis on exascale computing

FreeFEM-++: open source, developed on and off, has own language, has
good scalability results, includes RT0 and DG

Few (unavailable) MATLAB based HDG packages

Quick google search reveals a lot of papers with sentences like;

Few (unavailable) MATLAB based HDG packages

Quick google search reveals a lot of papers with sentences like;

"We have developed our MATLAB code on top iFEM package...”

Few (unavailable) MATLAB based HDG packages

Quick google search reveals a lot of papers with sentences like;
"We have developed our MATLAB code on top iFEM package...”

"We used our MATLAB code for these tests...”

Few (unavailable) MATLAB based HDG packages

Quick google search reveals a lot of papers with sentences like;
"We have developed our MATLAB code on top iFEM package...”
"We used our MATLAB code for these tests..."

"We have implemented this method in MATLAB as a proof of concept...”

Few (unavailable) MATLAB based HDG packages

Quick google search reveals a lot of papers with sentences like;

"We have developed our MATLAB code on top iFEM package...”

"We used our MATLAB code for these tests..."

"We have implemented this method in MATLAB as a proof of concept...”

None available publicly. Another common point,

Few (unavailable) MATLAB based HDG packages

Quick google search reveals a lot of papers with sentences like;

"We have developed our MATLAB code on top iFEM package...”

"We used our MATLAB code for these tests..."

"We have implemented this method in MATLAB as a proof of concept...”

None available publicly. Another common point, small problem sizes

Two available MATLAB based HDG packages

Deeper look reveals,

Two available MATLAB based HDG packages

Deeper look reveals,

HDG3D - http://www.math.udel.edu/"fjsayas/HDG3D/

| based my implementation upon this one.

Two available MATLAB based HDG packages

Deeper look reveals,

HDG3D - http://www.math.udel.edu/"fjsayas/HDG3D/

| based my implementation upon this one.

FESTUNG - https://github.com /FESTUNG/project

Only implements advection

Two available MATLAB based HDG packages

Deeper look reveals,

HDG3D - http://www.math.udel.edu/"fjsayas/HDG3D/

| based my implementation upon this one.

FESTUNG - https://github.com /FESTUNG/project

Only implements advection

Both implement LDG-H

What did | do?

Started from HDG3D to avoid

e creating a mesh structure
e writing quadrature rules

e implementing basis functions

Mesh maketh the FEM package

coordinates: [48x3 double]
elements: [108x4 doublel
dirichlet: [36x3 double]
neumann: [48x3 doublel
faces: [258x4 double]
dirfaces: [1x36 double]
neufaces: [1x48 double]
facebyele: [108x4 doublel
orientation: [108x4 double]
perm: [108x4 doublel
volume: [108x1 doublel
area: [258x1 doublel
normals: [108x12 double]

Quadratures - Volume Integrals

On the reference element K,

[0= § S watlen)

Quadratures - Volume Integrals

On the reference element K,
1
s o= 3 ;‘Uqﬁb(Pq)

Given tetrahedron (vi, vo, v3, v4), transformation from the reference

element to a general element,

Fr(x) = Bxkx + v

Quadratures - Volume Integrals

On the reference element K,
1
s o= 3 ;‘Uqﬁb(Pq)

Given tetrahedron (vi, vo, v3, v4), transformation from the reference

element to a general element,
Fr(x) = Bxkx + v

On general tetrahedra

[0=18cl [60 Fic = 1K we(Fic(p))

Quadratures - Volume Integrals

On the reference element K,
1
s o= 3 ;‘Uqﬁb(Pq)

Given tetrahedron (vi, vo, v3, v4), transformation from the reference

element to a general element,
Fr(x) = Bxkx + v
On general tetrahedra

[0=18cl [60 Fic = 1K we(Fic(p))

Construct Fx s.t. |Bx| =6|K]|.

Quadratures - Volume Integrals

An example,
| fo=6iKl [oo Fc= K1 22 o))ogd(Fi(pe)

Rewrite in more MATLAB friendly notation

VO/T® ((WQP)Tf(Xv YvZ))

Quadratures - Volume Integrals

An example,
[o =01KI [60 Fic = IKI Y F(Fi(pa) ot Fi (o)
K K
q
Rewrite in more MATLAB friendly notation

VO/T® ((WQP)Tf(Xv YvZ))

where (uT ® A); = ujA;

Quadratures - Volume Integrals

An example,
[o =01KI [60 Fic = IKI Y F(Fi(pa) ot Fi (o)
K K
q
Rewrite in more MATLAB friendly notation

VO/T® ((WQP)Tf(Xv YvZ))

where (uT ® A); = ujA; and (u © A);j = UA;.

Quadratures - Volume Integrals

vol” @ ((w® P)Tf(X,Y,Z))

P=basisf3d(2*xhat-1,2xyhat-1,2*zhat-1,k);
wP=bsxfun(Q@times,weights,P);

Ints=bsxfun(@times,T.volume’ ,wP’*f(x,y,2));

Highlights: bsxfun, dot product *

10

Quadratures - Face Integrals

On the reference element /:_,

/ﬁ¢ = ;;wqﬂpq)

11

Quadratures - Face Integrals

On the reference element /:_,
1
o ¢ = 2 qu¢(Pq)
q

Given triangle e = (wy, wa, w3), parametrization from the reference face

to a general face,

A

90(57 t) = 5(W2 - Wl)+ t(W3 - Wl)+ Wi, @ ’E — 67(57 t) €F

11

Quadratures - Face Integrals

On the reference element /:_,
1
o ¢ = 2 qu¢(Pq)
q

Given triangle e = (wy, wa, w3), parametrization from the reference face

to a general face,

A

90(57 t) = 5(W2 - Wl)+ t(W3 - Wl)+ Wi, @ ’E — 67(57 t) €F

Note that, |0s¢ x Orp| = 2|e|. On general triangle

[=2l [600 =1el S watelpa)).

11

Quadrature - Face Integrals

An example, < (hg) torA, 1 >e,

Ok

= P gm/FA oppop =3 weA(e(pq))ule(pq))

Rewrite in more MATLAB friendly notation, but with a loop over faces,

4
“ZU/T ® ((w © P/)T P/) , o] =row(a, /)
=1

12

drature - Face Inte

4
HZO'/T ® ((w op)” P,) , o] =row(a,/)
=1

d=basisf2d (2*s-1,2%t-1,k);

dweights=bsxfun(@times,d,weights);

dwd=dweights’*d;

HDGInterface=zeros(4*d2,4*d2,Nelts);

for 1=1:4

HDGInterface(block2(1l) ,block2(1),:)=reshape(kron(sigmakappa(l,:),dwd),.
[d2,d2,Nelts]);

end

Highlights: kron, :

13

Quadrature - Face Integrals

There are two other face integrals, namely,
< KVU-npu>e — < () roku, p >,
and
— < u,kVV-n >k — < KVU-n v >ax + < (k) roku, v >ak .
First one: HDGMixedDiffusion

Second one: HDGDiffusion

Both are similar to above example, just more complicated.

14

Local Solvers - Equation

Consider reaction-diffusion equation with all Dirichlet b.c.s,

u—rkAu="*F, inQ
u=gp, ondQ

15

Local Solvers - Weak Form

Find (U,)\) € Vj x My s.t. V(v,u) € Vi x My,

(kVu, Vv)g— < u,kVVv-n>ga+ < A\, kVVv - n >q
(@' —

— < —R\V >a0+ < —kVu-n

o
+ —ku,v >sq +(u,v)g = (f, v)a,
hK hK

and,

< «
— | < —rVu-n+ —l/fu.// >o0— < —KA\ U >aq | = 0.
hK hK

16

Local Solvers - Implementation

% Create the element matrices
[HDGDiffusion,HDGMixedDiff ,HDGInterface]l=. ..
matricesFace(T,sigma,kappa,k,formulas{3});
diffusion=Diffusion(T,k,kappa,formulas{1});
mass=MassMatrix(T,k,formulas{1});

17

Local Solvers - Implementation

% Create the element matrices
[HDGDiffusion,HDGMixedDiff ,HDGInterface]l=. ..
matricesFace(T,sigma,kappa,k,formulas{3});
diffusion=Diffusion(T,k,kappa,formulas{1});
mass=MassMatrix(T,k,formulas{1});

diffusion, mass and HDGDiffusion are of size ng, X Ney X Ney,

17

Local Solvers - Implementation

% Create the element matrices

[HDGDiffusion,HDGMixedDiff ,HDGInterface]l=. ..
matricesFace(T,sigma,kappa,k,formulas{3});

diffusion=Diffusion(T,k,kappa,formulas{1});

mass=MassMatrix(T,k,formulas{1});

diffusion, mass and HDGDiffusion are of size ng, X Ney X Ney,

HDGMixedDiff is of size 4ng, X ne, X ng

17

Local Solvers - Implementation

% Create the element matrices

[HDGDiffusion,HDGMixedDiff ,HDGInterface]l=. ..
matricesFace(T,sigma,kappa,k,formulas{3});

diffusion=Diffusion(T,k,kappa,formulas{1});

mass=MassMatrix(T,k,formulas{1});

diffusion, mass and HDGDiffusion are of size ng, X Ney X Ney,

HDGMixedDiff is of size 4ng, X ne, X ne and HDGInterface is of size

4nfu X 4nfu X Ngf.

17

Local Solvers - Implementation

%A= [[UVLV] b=1[f

b [UM LM 11, 0]

UV = mass + diffusion + HDGDiffusion;
UM = HDGMixedDiff;

LV = permute(UM, [2 1 3]);

LM = HDGInterface;

f=testElem(f,T,k,formulas{1});

18

Local Solvers - Implementation

for i=1:Nelts
AC:,:,i)= LM(:,:,i)-UM(:,:,i)*inv(UV(:,:,1))*LV(:,:,1);
b(:,i) = -UM(:,:,1)*inv(UV(:,:,i))*f(:,1);

end

19

Local Solvers - Implementation

for i=1:Nelts
AC:,:,i)= LM(:,:,i)-UM(:,:,i)*inv(UV(:,:,1))*LV(:,:,1);
b(:,i) = -UM(:,:,1)*inv(UV(:,:,i))*f(:,1);

end

Loop over elements? Isn't it bad?

19

Local Solvers - Implementation

for i=1:Nelts
AC:,:,i)= LM(:,:,i)-UM(:,:,i)*inv(UV(:,:,1))*LV(:,:,1);
b(:,i) = -UM(:,:,1)*inv(UV(:,:,i))*f(:,1);

end

Loop over elements? Isn't it bad? Yes.

19

Local Solvers - Implementation

for i=1:Nelts
AC:,:,i)= LM(:,:,i)-UM(:,:,i)*inv(UV(:,:,1))*LV(:,:,1);
b(:,i) = -UM(:,:,1)*inv(UV(:,:,i))*f(:,1);

end

Loop over elements? Isn't it bad? Yes.

Easily parallelizable. How?

19

Local Solvers - Implementation

for i=1:Nelts
AC:,:,i)= LM(:,:,i)-UM(:,:,i)*inv(UV(:,:,1))*LV(:,:,1);
b(:,i) = -UM(:,:,1)*inv(UV(:,:,i))*f(:,1);

end

Loop over elements? Isn't it bad? Yes.

Easily parallelizable. How? Write parfor instead of for.

19

Assembly

% Assemble the system
A=sparse(R(:),C(:),A(:));
phif=accumarray (RowsRHS,b(:));

uhatD=BC3d (uD,T,k,formulas{3}); % Dirichlet B.C.
%Dirichlet BC

Uhatv=zeros(d2*Nfaces, 1) ;
Uhatv(dirfaces)=uhatD; %uhat stored as a vector: d2xNfaces

20

Assembly

% Assemble the system

A=sparse(R(:),C(:),A(:));

phif=accumarray (RowsRHS,b(:));

uhatD=BC3d (uD,T,k,formulas{3}); % Dirichlet B.C.
%Dirichlet BC

Uhatv=zeros(d2*Nfaces, 1) ;
Uhatv(dirfaces)=uhatD; %uhat stored as a vector: d2xNfaces

Highlights: sparse and accumarray

20

Assembly

:RHS
rhs=zeros(d2*Nfaces, 1) ;

rhs(free)=phif (free);
rhs=rhs-A(:,dirfaces)*Uhatv(dirfaces);

% Solve the system

Uhatv(free)=A(free,free)\rhs(free);
Uhat=reshape (Uhatv,d2,Nfaces) ;

21

Assembly

% Reconstruct the solution

faces=T.facebyele’; faces=faces(:);
uhhataux=reshape (Uhat (:,faces), [4*¥d2,Nelts]);
Uh=zeros(d3,Nelts);

for K=1:Nelts
Uh(:,K)=inv(UV(:,:,K))*(£f(:,K)-LV(:,:,K)*uhhataux(:,K));

end

Loop over elements again, but it is not a problem.

22

Demonstration

This slide is left blank intentionally.

23

Thanks for listening!

Any questions?

24

	What is already around?
	What did I do?

