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General Scientific Computing Packages

Some tools that are commonly used

PETSc: Parallel library of matrix and vector data structures,
preconditioners, iterative solvers, nonlinear solvers, ODE solvers, GPU
support

SLEPc: Parallel library for the solution of large sparse eigenproblems
(par)METIS: Graph Partitioning and Fill-reducing Matrix Ordering
(p)BLAS, (SCA)LAPACK: Linear algebra routines

hypre: Parallel library of high performance preconditioners
SUNDIALS: Parallel library of ODE solvers

SuiteSparse: GraphBLAS, LU, Cholesky, QR, Matrix reorderings,...
MATLAB uses many parts of this package.
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Finite Element Packages

A NON-comprehensive list -everybody seems to have their packages!

Fluidity: Eulerian and Lagrangian description, main focus on fluid
dynamics, includes DG. Open source

OOFEM: Object oriented FEM solver, includes XFEM, open source, has
full restart support

FEniCS: open source, python based, well-developed, easy to use, includes
DG and a high performance version

DEAL.IIl: open source, well-developed, includes HDG and many others

MFEM: open source, rather recent, HDG is being developed(by us),
modular approach with emphasis on exascale computing

FreeFEM-++: open source, developed on and off, has own language, has
good scalability results, includes RT0 and DG
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"We used our MATLAB code for these tests..."

"We have implemented this method in MATLAB as a proof of concept...”

None available publicly. Another common point, small problem sizes
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Two available MATLAB based HDG packages

Deeper look reveals,

HDG3D - http://www.math.udel.edu/"fjsayas/HDG3D/

| based my implementation upon this one.

FESTUNG - https://github.com /FESTUNG/project

Only implements advection

Both implement LDG-H



What did | do?




Started from HDG3D to avoid

e creating a mesh structure
e writing quadrature rules

e implementing basis functions



Mesh maketh the FEM package

coordinates: [48x3 double]
elements: [108x4 doublel
dirichlet: [36x3 double]
neumann: [48x3 doublel
faces: [258x4 double]
dirfaces: [1x36 double]
neufaces: [1x48 double]
facebyele: [108x4 doublel
orientation: [108x4 double]
perm: [108x4 doublel
volume: [108x1 doublel
area: [258x1 doublel
normals: [108x12 double]
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Quadratures - Volume Integrals

On the reference element K,
1
s o= 3 ;‘Uqﬁb(Pq)

Given tetrahedron (vi, vo, v3, v4), transformation from the reference

element to a general element,
Fr(x) = Bxkx + v
On general tetrahedra

[ 0=18cl [ 60 Fic = 1K we(Fic(p))

Construct Fx s.t. |Bx| =6|K]|.
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Quadratures - Volume Integrals

An example,
[ o =01KI [ 60 Fic = IKI Y F(Fi(pa) ot Fi (o)
K K
q
Rewrite in more MATLAB friendly notation

VO/T® ((WQP)Tf(Xv YvZ))

where (uT ® A); = ujA; and (u © A);j = UA;.



Quadratures - Volume Integrals

vol” @ ((w® P)Tf(X,Y,Z))

P=basisf3d(2*xhat-1,2xyhat-1,2*zhat-1,k);
wP=bsxfun(Q@times,weights,P);

Ints=bsxfun(@times,T.volume’ ,wP’*f(x,y,2));

Highlights: bsxfun, dot product *

10
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Quadratures - Face Integrals

On the reference element /:_,
1
o ¢ = 2 qu¢(Pq)
q

Given triangle e = (wy, wa, w3), parametrization from the reference face

to a general face,

A

90(57 t) = 5(W2 - Wl)+ t(W3 - Wl)+ Wi, @ ’E — 67(57 t) €F

Note that, |0s¢ x Orp| = 2|e|. On general triangle

[ =2l [ 600 =1el S watelpa)).

11



Quadrature - Face Integrals

An example, < (hg) torA, 1 >e,

Ok

= P gm/FA oppop =3 weA(e(pq))ule(pq))

Rewrite in more MATLAB friendly notation, but with a loop over faces,

4
“ZU/T ® ((w © P/)T P/) , o] =row(a, /)
=1
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drature - Face Inte

4
HZO'/T ® ((w op)” P,) , o] =row(a,/)
=1

d=basisf2d (2*s-1,2%t-1,k);

dweights=bsxfun(@times,d,weights);

dwd=dweights’*d;

HDGInterface=zeros(4*d2,4*d2,Nelts);

for 1=1:4

HDGInterface(block2(1l) ,block2(1),:)=reshape(kron(sigmakappa(l,:),dwd),.
[d2,d2,Nelts]);

end

Highlights: kron, :
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Quadrature - Face Integrals

There are two other face integrals, namely,
< KVU-npu>e — < () roku, p >,
and
— < u,kVV-n >k — < KVU-n v >ax + < (k) roku, v >ak .
First one: HDGMixedDiffusion

Second one: HDGDiffusion

Both are similar to above example, just more complicated.
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Local Solvers - Equation

Consider reaction-diffusion equation with all Dirichlet b.c.s,

u—rkAu="*F, inQ
u=gp, ondQ

15



Local Solvers - Weak Form

Find (U,)\) € Vj x My s.t. V(v,u) € Vi x My,

(kVu, Vv)g— < u,kVVv-n>ga+ < A\, kVVv - n >q
(@' —

— < —R\V >a0+ < —kVu-n

o
+ —ku,v >sq +(u,v)g = (f, v)a,
hK hK

and,

< «
— | < —rVu-n+ —l/fu.// >o0— < —KA\ U >aq | = 0.
hK hK

16



Local Solvers - Implementation

% Create the element matrices
[HDGDiffusion,HDGMixedDiff ,HDGInterface]l=. ..
matricesFace(T,sigma,kappa,k,formulas{3});
diffusion=Diffusion(T,k,kappa,formulas{1});
mass=MassMatrix(T,k,formulas{1});

17
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Local Solvers - Implementation

% Create the element matrices

[HDGDiffusion,HDGMixedDiff ,HDGInterface]l=. ..
matricesFace(T,sigma,kappa,k,formulas{3});

diffusion=Diffusion(T,k,kappa,formulas{1});

mass=MassMatrix(T,k,formulas{1});

diffusion, mass and HDGDiffusion are of size ng, X Ney X Ney,

HDGMixedDiff is of size 4ng, X ne, X ne and HDGInterface is of size

4nfu X 4nfu X Ngf.

17



Local Solvers - Implementation

%A= [[UVLV] b=1[f

b [ UM LM 11, 0]

UV = mass + diffusion + HDGDiffusion;
UM = HDGMixedDiff;

LV = permute(UM, [2 1 3]);

LM = HDGInterface;

f=testElem(f,T,k,formulas{1});

18



Local Solvers - Implementation

for i=1:Nelts
AC:,:,i)= LM(:,:,i)-UM(:,:,i)*inv(UV(:,:,1))*LV(:,:,1);
b(:,i) = -UM(:,:,1)*inv(UV(:,:,i))*f(:,1);

end
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Local Solvers - Implementation

for i=1:Nelts
AC:,:,i)= LM(:,:,i)-UM(:,:,i)*inv(UV(:,:,1))*LV(:,:,1);
b(:,i) = -UM(:,:,1)*inv(UV(:,:,i))*f(:,1);

end

Loop over elements? Isn't it bad? Yes.

Easily parallelizable. How? Write parfor instead of for.

19



Assembly

% Assemble the system
A=sparse(R(:),C(:),A(:));
phif=accumarray (RowsRHS,b(:));

uhatD=BC3d (uD,T,k,formulas{3}); % Dirichlet B.C.
%Dirichlet BC

Uhatv=zeros(d2*Nfaces, 1) ;
Uhatv(dirfaces)=uhatD; %uhat stored as a vector: d2xNfaces
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uhatD=BC3d (uD,T,k,formulas{3}); % Dirichlet B.C.
%Dirichlet BC

Uhatv=zeros(d2*Nfaces, 1) ;
Uhatv(dirfaces)=uhatD; %uhat stored as a vector: d2xNfaces

Highlights: sparse and accumarray
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Assembly

:RHS
rhs=zeros(d2*Nfaces, 1) ;

rhs(free)=phif (free);
rhs=rhs-A(:,dirfaces)*Uhatv(dirfaces);

% Solve the system

Uhatv(free)=A(free,free)\rhs(free);
Uhat=reshape (Uhatv,d2,Nfaces) ;

21



Assembly

% Reconstruct the solution

faces=T.facebyele’; faces=faces(:);
uhhataux=reshape (Uhat (:,faces), [4*¥d2,Nelts]);
Uh=zeros(d3,Nelts);

for K=1:Nelts
Uh(:,K)=inv(UV(:,:,K))*(£f(:,K)-LV(:,:,K)*uhhataux(:,K));

end

Loop over elements again, but it is not a problem.

22



Demonstration

This slide is left blank intentionally.
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Thanks for listening!

Any questions?
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