Introduction to Hybridized Discontinuous Galerkin (HDG) Methods

Abdullah Ali Sivas

December 21, 2017

Table of contents

1. (Not so) Brief Overview
2. Discontinuous Galerkin
3. Idea of Hybridizable Discontinuous Galerkin
4. IPDG-H for Advection-Diffusion-Reaction Problems
5. IPDG-H for the Stokes Problem

(Not so) Brief Overview

Steady state problem

General second order PDE
$u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})\left(\Omega \subset \mathbb{R}^{d}, d \geq 1\right.$ bounded open domain $)$

$$
\begin{aligned}
-\nabla \cdot \nu \nabla u+\nabla \cdot(\mathbf{b} u) & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \Gamma .
\end{aligned}
$$

Steady state problem

General second order PDE
$u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})\left(\Omega \subset \mathbb{R}^{d}, d \geq 1\right.$ bounded open domain $)$

$$
\begin{aligned}
-\nabla \cdot \nu \nabla u+\nabla \cdot(\mathbf{b} u) & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \Gamma .
\end{aligned}
$$

Possible discretizations

Steady state problem

General second order PDE

$u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})\left(\Omega \subset \mathbb{R}^{d}, d \geq 1\right.$ bounded open domain $)$

$$
\begin{aligned}
-\nabla \cdot \nu \nabla u+\nabla \cdot(\mathbf{b} u) & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \Gamma .
\end{aligned}
$$

Possible discretizations

1. Finite Difference Method: use $\partial_{x} u\left(x_{i}\right) \approx \frac{u\left(x_{i}+h\right)-u\left(x_{i}\right)}{h}$ with "fixed" h

Steady state problem

General second order PDE
$u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})\left(\Omega \subset \mathbb{R}^{d}, d \geq 1\right.$ bounded open domain $)$

$$
\begin{aligned}
-\nabla \cdot \nu \nabla u+\nabla \cdot(\mathbf{b} u) & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \Gamma .
\end{aligned}
$$

Possible discretizations

1. Finite Difference Method: use $\partial_{x} u\left(x_{i}\right) \approx \frac{u\left(x_{i}+h\right)-u\left(x_{i}\right)}{h}$ with "fixed" h
2. Finite Volume Method: use the integral form of the equation

Steady state problem

General second order PDE
$u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})\left(\Omega \subset \mathbb{R}^{d}, d \geq 1\right.$ bounded open domain $)$

$$
\begin{aligned}
-\nabla \cdot \nu \nabla u+\nabla \cdot(\mathbf{b} u) & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \Gamma .
\end{aligned}
$$

Possible discretizations

1. Finite Difference Method: use $\partial_{x} u\left(x_{i}\right) \approx \frac{u\left(x_{i}+h\right)-u\left(x_{i}\right)}{h}$ with "fixed" h
2. Finite Volume Method: use the integral form of the equation
3. Finite Element Method: use the weak form

F?M

FDM

- easy to implement

F?M

FDM

- easy to implement
- higher order is
complicated

F?M

FDM

- easy to implement
- higher order is
complicated
- complicated for
complex geometry
or unstructured
mesh

F?M

FDM

- easy to implement
- higher order is
complicated
- complicated for
complex geometry
or unstructured
mesh
- not conservative

F?M

FDM

- easy to implement
- higher order is complicated
- complicated for complex geometry or unstructured mesh
- not conservative

FVM

- conservative discretization

F?M

FDM

- easy to implement
- higher order is complicated
- complicated for complex geometry or unstructured mesh
- not conservative

FVM

- conservative discretization
- higher order is complicated

F?M

FDM

- easy to implement
- higher order is complicated
- complicated for complex geometry or unstructured mesh
- not conservative

FVM

- conservative discretization
- higher order is complicated
- complicated for unstructured grid

F?M

FDM

- easy to implement
- higher order is complicated
- complicated for complex geometry or unstructured mesh

FVM

- conservative discretization
- higher order is complicated
- complicated for unstructured grid

FEM

- higher order is easy
- not conservative

F?M

FDM

- easy to implement
- higher order is complicated
- complicated for complex geometry or unstructured mesh

FVM

- conservative discretization
- higher order is complicated
- complicated for unstructured grid

FEM

- higher order is easy
- unstructured grid is not a problem
- not conservative

F?M

FDM

- easy to implement
- higher order is complicated
- complicated for complex geometry or unstructured mesh
- not conservative

FVM

- conservative discretization
- higher order is complicated
- complicated for unstructured grid

FEM

- higher order is easy
- unstructured grid is not a problem
- not conservative

F?M

FDM

- easy to implement
- higher order is complicated
- complicated for complex geometry or unstructured mesh
- not conservative

FVM

- conservative discretization
- higher order is complicated
- complicated for unstructured grid

FEM

- higher order is easy
- unstructured grid is not a problem
- not conservative
- poor performance for convection dominated problems

Weak form \& Classical Galerkin

Weak form

$$
-\nabla \cdot \nu \nabla u+\nabla \cdot(\mathbf{b} u)=f \quad \text { in } \Omega
$$

multiply by v and IBP

$$
\underbrace{\int_{\Omega} \nu \nabla u \cdot \nabla v-\int_{\Omega} u \mathbf{b} \cdot \nabla v+B C}_{a(u, v)}=\underbrace{\int_{\Omega} f v}_{l(v)}
$$

Weak form \& Classical Galerkin

Weak form

$$
-\nabla \cdot \nu \nabla u+\nabla \cdot(\mathbf{b} u)=f \quad \text { in } \Omega
$$

multiply by v and IBP

$$
\underbrace{\int_{\Omega} \nu \nabla u \cdot \nabla v-\int_{\Omega} u \mathbf{b} \cdot \nabla v+B C}_{a(u, v)}=\underbrace{\int_{\Omega} f v}_{l(v)}
$$

Only the first derivative appears in the formula

Weak form \& Classical Galerkin

Weak form

$$
-\nabla \cdot \nu \nabla u+\nabla \cdot(\mathbf{b} u)=f \quad \text { in } \Omega
$$

multiply by v and IBP

$$
\underbrace{\int_{\Omega} \nu \nabla u \cdot \nabla v-\int_{\Omega} u \mathbf{b} \cdot \nabla v+B C}_{a(u, v)}=\underbrace{\int_{\Omega} f v}_{l(v)}
$$

Only the first derivative appears in the formula

$$
u, v \in V=H_{0}^{1}(\Omega)=\left\{v \in L^{2}(\Omega): \nabla v \in\left[L^{2}(\Omega)\right]^{d},\left.v\right|_{\Gamma=0}\right\}
$$

Finite Element Methods

$$
? u \in V: a(u, v)=I(v) \quad \forall v \in V
$$

- V is infinite dimensional

Finite Element Methods

$$
? u \in V: a(u, v)=I(v) \quad \forall v \in V
$$

- V is infinite dimensional
- Restrict to a finite dimensional subspace $V_{h} \subset V$

Finite Element Methods

$$
? u_{h} \in V_{h}: a\left(u_{h}, v_{h}\right)=I\left(v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

- V is infinite dimensional
- Restrict to a finite dimensional subspace $V_{h} \subset V$
- \mathcal{T}_{h} : mesh over Ω, V_{h} : piecewise polynomials that are continuous

Finite Element Methods

$$
? u_{h} \in V_{h}: a\left(u_{h}, v_{h}\right)=I\left(v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

- V is infinite dimensional
- Restrict to a finite dimensional subspace $V_{h} \subset V$
- \mathcal{T}_{h} : mesh over Ω, V_{h} : piecewise polynomials that are continuous

$$
V_{h}=\left\{v \in L^{2}(\Omega): v \in \mathcal{P}_{k}(K), \forall K \in \mathcal{T}_{h}\right\} \cap C(\Omega)
$$

Finite Element Methods

$$
? u_{h} \in V_{h}: a\left(u_{h}, v_{h}\right)=I\left(v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

- V is infinite dimensional
- Restrict to a finite dimensional subspace $V_{h} \subset V$
- \mathcal{T}_{h} : mesh over Ω, V_{h} : piecewise polynomials that are continuous

$$
V_{h}=\left\{v \in L^{2}(\Omega): v \in \mathcal{P}_{k}(K), \forall K \in \mathcal{T}_{h}\right\} \cap C(\Omega)
$$

- Basis with compact support

Finite Element Methods

$$
? u_{h} \in V_{h}: a\left(u_{h}, v_{h}\right)=I\left(v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

- V is infinite dimensional
- Restrict to a finite dimensional subspace $V_{h} \subset V$
- \mathcal{T}_{h} : mesh over Ω, V_{h} : piecewise polynomials that are continuous

$$
V_{h}=\left\{v \in L^{2}(\Omega): v \in \mathcal{P}_{k}(K), \forall K \in \mathcal{T}_{h}\right\} \cap C(\Omega)
$$

- Basis with compact support
- Easy to integrate

Finite Element Methods

$$
? u_{h} \in V_{h}: a\left(u_{h}, v_{h}\right)=I\left(v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

- V is infinite dimensional
- Restrict to a finite dimensional subspace $V_{h} \subset V$
- \mathcal{T}_{h} : mesh over Ω, V_{h} : piecewise polynomials that are continuous

$$
V_{h}=\left\{v \in L^{2}(\Omega): v \in \mathcal{P}_{k}(K), \forall K \in \mathcal{T}_{h}\right\} \cap C(\Omega)
$$

- Basis with compact support
- Easy to integrate
- Easy to go for high polynomial degree

Linear system

Choose a basis of $V_{h}:\left\{\Phi_{i}, \cdots, \Phi_{N}\right\}$

Linear system

Choose a basis of $V_{h}:\left\{\Phi_{i}, \cdots, \Phi_{N}\right\}$
Seek the coefficients $\left\{c_{i}\right\}$ such that $u_{h}=\sum_{i=1}^{N} c_{i} \Phi_{i}$

Linear system

Choose a basis of $V_{h}:\left\{\Phi_{i}, \cdots, \Phi_{N}\right\}$
Seek the coefficients $\left\{c_{i}\right\}$ such that $u_{h}=\sum_{i=1}^{N} c_{i} \Phi_{i}$
Linear system

$$
\mathbf{A c}=\mathbf{b}
$$

where

- $\mathbf{A}_{i, j}=a\left(\Phi_{j}, \Phi_{i}\right)$

Linear system

Choose a basis of $V_{h}:\left\{\Phi_{i}, \cdots, \Phi_{N}\right\}$
Seek the coefficients $\left\{c_{i}\right\}$ such that $u_{h}=\sum_{i=1}^{N} c_{i} \Phi_{i}$
Linear system

$$
\mathbf{A c}=\mathbf{b}
$$

where

- $\mathbf{A}_{i, j}=a\left(\Phi_{j}, \Phi_{i}\right)$
- $\mathbf{b}_{i}=I\left(\Phi_{i}\right)$

Linear system

Choose a basis of $V_{h}:\left\{\Phi_{i}, \cdots, \Phi_{N}\right\}$
Seek the coefficients $\left\{c_{i}\right\}$ such that $u_{h}=\sum_{i=1}^{N} c_{i} \Phi_{i}$
Linear system

$$
\mathbf{A c}=\mathbf{b}
$$

where

- $\mathbf{A}_{i, j}=a\left(\Phi_{j}, \Phi_{i}\right)$
- $\mathbf{b}_{i}=I\left(\Phi_{i}\right)$
- \mathbf{A} is very sparse

Linear system

Choose a basis of $V_{h}:\left\{\Phi_{i}, \cdots, \Phi_{N}\right\}$
Seek the coefficients $\left\{c_{i}\right\}$ such that $u_{h}=\sum_{i=1}^{N} c_{i} \Phi_{i}$
Linear system

$$
\mathbf{A c}=\mathbf{b}
$$

where

- $\mathbf{A}_{i, j}=a\left(\Phi_{j}, \Phi_{i}\right)$
- $\mathbf{b}_{i}=I\left(\Phi_{i}\right)$
- \mathbf{A} is very sparse
- Direct or iterative solver?

Linear system

Choose a basis of $V_{h}:\left\{\Phi_{i}, \cdots, \Phi_{N}\right\}$
Seek the coefficients $\left\{c_{i}\right\}$ such that $u_{h}=\sum_{i=1}^{N} c_{i} \Phi_{i}$
Linear system

$$
\mathbf{A c}=\mathbf{b}
$$

where

- $\mathbf{A}_{i, j}=a\left(\Phi_{j}, \Phi_{i}\right)$
- $\mathbf{b}_{i}=I\left(\Phi_{i}\right)$
- \mathbf{A} is very sparse
- Direct or iterative solver?
- Size vs condition number

Degrees of Freedoms in 2D

$$
k=1
$$

Degrees of Freedoms in 2D

$$
k=2
$$

Degrees of Freedoms in 2D
$k=1$

$k=2$
$k=3$

Diffusion Dominated Problem

Consider the advection-diffusion problem

$$
\begin{aligned}
& -\kappa \Delta u+\vec{c} \cdot \nabla u=f \quad \text { in } \Omega=[0,1] \times[0,1], \\
& u=g_{D} \quad \text { on } \Gamma=\partial \Omega,
\end{aligned}
$$

with exact solution $u(x, y)=\sin (6 x) \sin (6 y), f$ and g_{D} are derived from this exact solution, $\vec{c}=(-1,1)^{\top}$ and κ is the diffusion coefficient.

Diffusion Dominated Problem

Consider the advection-diffusion problem

$$
\begin{aligned}
-\kappa \Delta u+\vec{c} \cdot \nabla u & =f & & \text { in } \Omega=[0,1] \times[0,1], \\
u & =g_{D} & & \text { on } \Gamma
\end{aligned}=\partial \Omega,
$$

with exact solution $u(x, y)=\sin (6 x) \sin (6 y), f$ and g_{D} are derived from this exact solution, $\vec{c}=(-1,1)^{T}$ and κ is the diffusion coefficient.

Convergence rates

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C h^{k+1}
$$

Figure 1: $\left\|u_{C G}-u_{e}\right\|_{L_{2}}=4.7704 e-4$

Pure Advection Problem

Consider the same problem

$$
\begin{aligned}
& -\kappa \Delta u+\vec{c} \cdot \nabla u=f \quad \text { in } \Omega=[0,1] \times[0,1], \\
& u=g_{D} \quad \text { on } \Gamma=\partial \Omega,
\end{aligned}
$$

with exact solution $u(x, y)=\sin (6 x) \sin (6 y), f$ and g_{D} are derived from this exact solution, $\vec{c}=(-1,1)^{T}$ and $\kappa=0$.

Figure 2: $\left\|u_{C G}-u_{e}\right\|_{L_{2}}=7.02071$

DG

Possible improvement: DG

FVM

- numerical fluxes over the elements
- upwind flux

Possible improvement: DG

FVM

- numerical fluxes over the elements
- upwind flux

CG

- higher order discretization

Possible improvement: DG

FVM

- numerical fluxes over the elements
- upwind flux

DG

- derive weak form starting from one element
- connection between elements via fluxes
- higher order discretization

Mesh first

Mesh first

$$
\text { Rewrite }-\nabla \cdot \nu \nabla u+\nabla \cdot(\mathbf{b} u)=f \text { using } \mathbf{q}=-\nabla u
$$

First order system

$$
\begin{aligned}
\nu \nabla \cdot \mathbf{q}+\nabla \cdot(\mathbf{b} u) & =f \\
\mathbf{q}+\nabla u & =\mathbf{0}
\end{aligned}
$$

Mesh first
Rewrite $-\nabla \cdot \nu \nabla u+\nabla \cdot(\mathbf{b} u)=f$ using $\mathbf{q}=-\nabla u$
First order system

$$
\begin{aligned}
\nu \nabla \cdot \mathbf{q}+\nabla \cdot(\mathbf{b} u) & =f \\
\mathbf{q}+\nabla u & =\mathbf{0}
\end{aligned}
$$

IBP on mesh element $K+$ discretization

$$
\begin{aligned}
\int_{K} f w_{h}= & -\int_{K} \nu \mathbf{q}_{h} \cdot \nabla w_{h}+\int_{\partial K} \nu \widehat{\mathbf{q}}_{h} \cdot \mathbf{n} w_{h} \\
& -\int_{K} u_{h} \mathbf{b} \cdot \nabla w_{h}+\int_{\partial K} w_{h} \widehat{u}_{h} \mathbf{b} \cdot \mathbf{n} \\
\int_{K} \mathbf{q}_{h} \cdot \mathbf{v}_{h}= & -\int_{K} \nabla u_{h} \cdot \mathbf{v}_{h}+\int_{\partial K}\left(u_{h}-\widehat{u}_{h}\right) \mathbf{v}_{h} \cdot \mathbf{n}
\end{aligned}
$$

1 equation or 2 equations?

If $\mathbf{v}=\nu \nabla w_{h}$

$$
\begin{aligned}
\int_{K} f w_{h}= & \int_{K} \nu \nabla u_{h} \cdot \nabla w_{h}+\int_{\partial K}\left(\widehat{u}_{h}-u_{h}\right) \nu \nabla w_{h} \cdot \mathbf{n}+\int_{\partial K} \nu \widehat{\mathbf{q}}_{h} \cdot \mathbf{n} w_{h} \\
& -\int_{K} u_{h} \mathbf{b} \cdot \nabla w_{h}+\int_{\partial K} w_{h} \widehat{u}_{h} \mathbf{b} \cdot \mathbf{n}
\end{aligned}
$$

1 equation or 2 equations?

If $\mathbf{v}=\nu \nabla w_{h}$

$$
\begin{aligned}
\int_{K} f w_{h}= & \int_{K} \nu \nabla u_{h} \cdot \nabla w_{h}+\int_{\partial K}\left(\widehat{u}_{h}-u_{h}\right) \nu \nabla w_{h} \cdot \mathbf{n}+\int_{\partial K} \nu \widehat{\mathbf{q}}_{h} \cdot \mathbf{n} w_{h} \\
& -\int_{K} u_{h} \mathbf{b} \cdot \nabla w_{h}+\int_{\partial K} w_{h} \widehat{u}_{h} \mathbf{b} \cdot \mathbf{n}
\end{aligned}
$$

Summing over all $K \in \mathcal{T}_{h}$

1 equation or 2 equations?

If $\mathbf{v}=\nu \nabla w_{h}$

$$
\begin{aligned}
\int_{K} f w_{h}= & \int_{K} \nu \nabla u_{h} \cdot \nabla w_{h}+\int_{\partial K}\left(\widehat{u}_{h}-u_{h}\right) \nu \nabla w_{h} \cdot \mathbf{n}+\int_{\partial K} \nu \widehat{\mathbf{q}}_{h} \cdot \mathbf{n} w_{h} \\
& -\int_{K} u_{h} \mathbf{b} \cdot \nabla w_{h}+\int_{\partial K} w_{h} \widehat{u}_{h} \mathbf{b} \cdot \mathbf{n}
\end{aligned}
$$

Summing over all $K \in \mathcal{T}_{h}$
The interior faces will show up twice

Choice of the numerical flux

Advection

Use upwinding

$$
\widehat{u}_{h}= \begin{cases}u_{L} & \text { if } \mathbf{b} \cdot \mathbf{n} \geq 0 \\ u_{R} & \text { if } \mathbf{b} \cdot \mathbf{n}<0\end{cases}
$$

Choice of the numerical flux

Advection

Use upwinding

$$
\widehat{u}_{h}= \begin{cases}u_{L} & \text { if } \mathbf{b} \cdot \mathbf{n} \geq 0 \\ u_{R} & \text { if } \mathbf{b} \cdot \mathbf{n}<0\end{cases}
$$

Diffusion part
Plenty of possibilities (see Brezzi-Marini survey)

Choice of the numerical flux

Advection

Use upwinding

$$
\widehat{u}_{h}= \begin{cases}u_{L} & \text { if } \mathbf{b} \cdot \mathbf{n} \geq 0 \\ u_{R} & \text { if } \mathbf{b} \cdot \mathbf{n}<0\end{cases}
$$

Diffusion part

Plenty of possibilities (see Brezzi-Marini survey)
Interior penalty: $\widehat{\mathbf{q}}_{h}=\nabla u_{L}+\frac{\alpha}{h} \llbracket u_{h} \rrbracket \mathbf{n}=\nabla u_{L}+\frac{\alpha}{h}\left(u_{L}-u_{R}\right) \mathbf{n}$

Choice of the numerical flux

Advection

Use upwinding

$$
\widehat{u}_{h}= \begin{cases}u_{L} & \text { if } \mathbf{b} \cdot \mathbf{n} \geq 0 \\ u_{R} & \text { if } \mathbf{b} \cdot \mathbf{n}<0\end{cases}
$$

Diffusion part

Plenty of possibilities (see Brezzi-Marini survey)
Interior penalty: $\widehat{\mathbf{q}}_{h}=\nabla u_{L}+\frac{\alpha}{h} \llbracket u_{h} \rrbracket \mathbf{n}=\nabla u_{L}+\frac{\alpha}{h}\left(u_{L}-u_{R}\right) \mathbf{n}$
Example with 2 equations: Local DG: $\widehat{\mathbf{q}}_{h}=\mathbf{q}_{L}+\tau\left(u_{L}-u_{R}\right) \mathbf{n}$

Upwind in 2D

Upwind in 2D

Upwind in 2D

Upwind in 2D

IP discretization

IP approximate weak form
Seek $u_{h} \in V_{h}$ such that $a_{D G}\left(u_{h}, v_{h}\right)=I_{D G}\left(v_{h}\right)$ for all $v_{h} \in V_{h}$.

IP discretization

IP approximate weak form
Seek $u_{h} \in V_{h}$ such that $a_{D G}\left(u_{h}, v_{h}\right)=I_{D G}\left(v_{h}\right)$ for all $v_{h} \in V_{h}$.
Looks like CG, but it is totally different

IP approximate weak form
Seek $u_{h} \in V_{h}$ such that $a_{D G}\left(u_{h}, v_{h}\right)=I_{D G}\left(v_{h}\right)$ for all $v_{h} \in V_{h}$.
Looks like CG, but it is totally different
IP notations

$$
\begin{aligned}
a_{D G}\left(u_{h}, v_{h}\right)= & \sum_{K \in \mathcal{T}_{h}} \int_{K} \nu \nabla u_{h} \cdot \nabla w_{h}-\sum_{K \in \mathcal{T}_{h}} \int_{\partial K} u_{h} \mathbf{b} \cdot \nabla v_{h} \\
& + \text { interior face terms } \\
I_{D G}\left(v_{h}\right)= & \sum_{K \in \mathcal{T}_{h}} \int_{K} f v_{h}+B C \\
V_{h}= & \left\{v \in L^{2}(\Omega): v \in \mathcal{P}_{k}(K), \forall K \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

2D DG basis functions

$$
k=1
$$

2D DG basis functions

$$
k=1
$$

$$
k=2
$$

2D DG basis functions

$$
k=1
$$

$$
k=2
$$

$$
k=3
$$

CG vs DG pros and cons

CG

- lower number of degrees of freedom

DG

- higher number of degrees of freedom

CG vs DG pros and cons

CG

- lower number of degrees of freedom
- diffusion dominated cases are easier to solve by iterative methods

DG

- higher number of degrees of freedom
- harder to solve with an iterative solver

CG vs DG pros and cons

CG

- lower number of degrees of freedom
- diffusion dominated cases are easier to solve by iterative methods
- fails for convection dominated cases

DG

- higher number of degrees of freedom
- harder to solve with an iterative solver
- works better for convection dominated cases

CG vs DG pros and cons

CG

- lower number of degrees of freedom
- diffusion dominated cases are easier to solve by iterative methods
- fails for convection dominated cases
- hard to do hp adaptivity: the unknowns on different elements are connected

DG

- higher number of degrees of freedom
- harder to solve with an iterative solver
- works better for convection dominated cases
- $h p$ adaptivity is easy: the unknowns on different elements are not connected

Diffusion Dominated Problem

Consider the advection-diffusion problem

$$
\begin{aligned}
& -\kappa \Delta u+\vec{c} \cdot \nabla u=f \quad \text { in } \Omega=[0,1] \times[0,1], \\
& u=g_{D} \quad \text { on } \Gamma=\partial \Omega,
\end{aligned}
$$

with exact solution $u(x, y)=\sin (6 x) \sin (6 y), f$ and g_{D} are derived from this exact solution, $\vec{c}=(-1,1)^{T}$ and κ is the diffusion coefficient.

Diffusion Dominated Problem

Consider the advection-diffusion problem

$$
\begin{aligned}
-\kappa \Delta u+\vec{c} \cdot \nabla u & =f & & \text { in } \Omega=[0,1] \times[0,1], \\
u & =g_{D} & & \text { on } \Gamma
\end{aligned}=\partial \Omega,
$$

with exact solution $u(x, y)=\sin (6 x) \sin (6 y), f$ and g_{D} are derived from this exact solution, $\vec{c}=(-1,1)^{T}$ and κ is the diffusion coefficient.

Convergence rates

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C h^{k+1}
$$

Figure 3: $\left\|u_{D G}-u_{e}\right\|_{L_{2}}=3.8546 e-4$

Pure Advection Problem

Consider the same problem

$$
\begin{aligned}
& -\kappa \Delta u+\vec{c} \cdot \nabla u=f \quad \text { in } \Omega=[0,1] \times[0,1], \\
& u=g_{D} \quad \text { on } \Gamma=\partial \Omega,
\end{aligned}
$$

with exact solution $u(x, y)=\sin (6 x) \sin (6 y), f$ and g_{D} are derived from this exact solution, $\vec{c}=(-1,1)^{T}$ and $\kappa=0$.

Figure 4: $\left\|u_{D G}-u_{e}\right\|_{L_{2}}=3.0956 e-4$

Idea of HDG

Hybridizable DG

DG

- derive weak form on one element

Hybridizable DG

DG

- derive weak form on one element
- connection between elements via fluxes

Hybridizable DG

DG

- derive weak form on one element
- connection between elements via fluxes

HDG

- derive weak form on one element

Hybridizable DG

DG

- derive weak form on one element
- connection between elements via fluxes

HDG

- derive weak form on one element
- additional unknowns on the edges

Hybridizable DG

DG

- derive weak form on one element
- connection between elements via fluxes

HDG

- derive weak form on one element
- additional unknowns on the edges
- connection between elements via fluxes that uses functions on the edges

HDG

$$
\begin{aligned}
& u_{h} \in V_{h}=\left\{v_{h} \in L^{2}(\Omega), v_{h} \in P_{k}(K) \forall K \in \mathcal{T}_{h}\right\} \\
& \bar{u}_{h} \in \bar{V}_{h}=\left\{\bar{v}_{h} \in L^{2}(\mathcal{F}), \bar{v}_{h} \in P_{k}(F) \forall F \in \mathcal{F}\right\}
\end{aligned}
$$

HDG fluxes

DG fluxes

Advection: upwinding

HDG fluxes

DG fluxes

Advection: upwinding
Diffusion Interior penalty or Local DG or one of the many

HDG fluxes

DG fluxes

Advection: upwinding
Diffusion Interior penalty or Local DG or one of the many

HDG fluxes

Advection: $\widehat{u}_{h}= \begin{cases}u_{L} & \text { if } \mathbf{b} \cdot \mathbf{n} \geq 0 \\ \bar{u} & \text { if } \mathbf{b} \cdot \mathbf{n}<0\end{cases}$

HDG fluxes

DG fluxes

Advection: upwinding
Diffusion Interior penalty or Local DG or one of the many

HDG fluxes

Advection: $\widehat{u}_{h}= \begin{cases}u_{L} & \text { if } \mathbf{b} \cdot \mathbf{n} \geq 0 \\ \bar{u} & \text { if } \mathbf{b} \cdot \mathbf{n}<0\end{cases}$
Diffusion IP: $\widehat{\mathbf{q}}_{h}=\nabla u_{L}+\frac{\alpha}{h}\left(u_{L}-\bar{u}\right) \mathbf{n}$

HDG fluxes

DG fluxes

Advection: upwinding
Diffusion Interior penalty or Local DG or one of the many

HDG fluxes

Advection: $\widehat{u}_{h}= \begin{cases}u_{L} & \text { if } \mathbf{b} \cdot \mathbf{n} \geq 0 \\ \bar{u} & \text { if } \mathbf{b} \cdot \mathbf{n}<0\end{cases}$
Diffusion IP: $\widehat{\mathbf{q}}_{h}=\nabla u_{L}+\frac{\alpha}{h}\left(u_{L}-\bar{u}\right) \mathbf{n}$
Local DG: $\widehat{\mathbf{q}}_{h}=\mathbf{q}_{L}+\tau\left(u_{L}-\bar{u}\right) \mathbf{n}$

Upwind for HDG

Upwind for HDG

Upwind for HDG

Upwind for HDG

2 unknowns but only 1 equation

Solve $-u^{\prime \prime}=1, u(-1)=u(1)=0$ as
How to choose \bar{u} ?

$$
\begin{aligned}
-u^{\prime \prime} & =1 & \text { on }(-1,0) & \\
u(-1) & =0 & & -u^{\prime \prime}
\end{aligned}=1 \quad \text { on }(0,1)
$$

2 unknowns but only 1 equation

Solve $-u^{\prime \prime}=1, u(-1)=u(1)=0$ as
How to choose \bar{u} ?

$$
\begin{aligned}
-u^{\prime \prime} & =1 & \text { on }(-1,0) & \\
u(-1) & =0 & & -u^{\prime \prime}
\end{aligned}=1 \quad \text { on }(0,1)
$$

$$
\bar{u}=0.75
$$

2 unknowns but only 1 equation

Solve $-u^{\prime \prime}=1, u(-1)=u(1)=0$ as
How to choose \bar{u} ?

$$
\begin{aligned}
-u^{\prime \prime} & =1 & \text { on }(-1,0) & \\
u(-1) & =0 & & -u^{\prime \prime}
\end{aligned}=1 \quad \text { on }(0,1)
$$

$$
\bar{u}=0.5
$$

$$
\bar{u}=0.75
$$

Continuous flux

Equation for \bar{u} : to ensure a continuous flux

HDG Degrees of Freedom

$$
k=1
$$

HDG Degrees of Freedom

$k=2$

HDG Degrees of Freedom

$$
k=1
$$

$$
k=2
$$

$$
k=3
$$

Linear problem

Weak form

Seek $\left(u_{h}, \bar{u}_{h}\right) \in V_{h} \times \bar{V}_{h}$ such that forall $\left(v_{h}, \bar{v}_{h}\right) \in V_{h} \times \bar{V}_{h}$

$$
a_{H D G}\left(\left(u_{h}, \bar{u}_{h}\right),\left(v_{h}, \bar{v}_{h}\right)\right)=I_{H D G}\left(v_{h}, \bar{v}_{h}\right)
$$

Linear problem

Weak form

Seek $\left(u_{h}, \bar{u}_{h}\right) \in V_{h} \times \bar{V}_{h}$ such that forall $\left(v_{h}, \bar{v}_{h}\right) \in V_{h} \times \bar{V}_{h}$

$$
a_{H D G}\left(\left(u_{h}, \bar{u}_{h}\right),\left(v_{h}, \bar{v}_{h}\right)\right)=I_{H D G}\left(v_{h}, \bar{v}_{h}\right)
$$

Linear system System form

$$
\begin{aligned}
a_{I I}\left(u_{h}, v_{h}\right)+a_{F I}\left(\bar{u}_{h}, v_{h}\right) & =I_{I}\left(v_{h}\right) \\
a_{I F}\left(u_{h}, \bar{v}_{h}\right)+a_{F F}\left(\bar{u}_{h}, \bar{v}_{h}\right) & =I_{F}\left(\bar{v}_{h}\right)
\end{aligned}
$$

Linear problem

Weak form

Seek $\left(u_{h}, \bar{u}_{h}\right) \in V_{h} \times \bar{V}_{h}$ such that forall $\left(v_{h}, \bar{v}_{h}\right) \in V_{h} \times \bar{V}_{h}$

$$
a_{H D G}\left(\left(u_{h}, \bar{u}_{h}\right),\left(v_{h}, \bar{v}_{h}\right)\right)=I_{H D G}\left(v_{h}, \bar{v}_{h}\right)
$$

Linear system System form

$$
\begin{aligned}
a_{I I}\left(u_{h}, v_{h}\right)+a_{F I}\left(\bar{u}_{h}, v_{h}\right) & =I_{I}\left(v_{h}\right) \\
a_{I F}\left(u_{h}, \bar{v}_{h}\right)+a_{F F}\left(\bar{u}_{h}, \bar{v}_{h}\right) & =I_{F}\left(\bar{v}_{h}\right)
\end{aligned}
$$

Block system

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
U \\
U
\end{array}\right]=\left[\begin{array}{l}
F \\
G
\end{array}\right]
$$

Schur-complement

A is block diagonal

$$
\begin{array}{rrr}
A U+B \bar{U}=F \\
C U+D \bar{U}=G
\end{array} \quad \Leftrightarrow \quad C A^{-1}(F-B \bar{U})+D \bar{U}=G
$$

Schur-complement

A is block diagonal

$$
\begin{array}{rr}
A U+B \bar{U}=F \\
C U+D \bar{U}=G
\end{array} \quad \Leftrightarrow \quad C A^{-1}(F-B \bar{U})+D \bar{U}=G
$$

Solution in two steps

Schur-complement

A is block diagonal

$$
\begin{array}{lr}
A U+B \bar{U}=F \\
C U+D \bar{U}=G
\end{array} \quad \Leftrightarrow \quad C A^{-1}(F-B \bar{U})+D \bar{U}=G
$$

Solution in two steps

$$
\left(D-C A^{-1} B\right) \bar{U}=G-C A^{-1} F
$$

Schur-complement

A is block diagonal

$$
\begin{array}{lr}
A U+B \bar{U}=F \\
C U+D \bar{U}=G
\end{array} \quad \Leftrightarrow \quad C A^{-1}(F-B \bar{U})+D \bar{U}=G
$$

Solution in two steps

$$
\begin{gathered}
\left(D-C A^{-1} B\right) \bar{U}=G-C A^{-1} F \\
U=A^{-1}(F-B \bar{U})
\end{gathered}
$$

Diffusion Dominated Problem

Consider the advection-diffusion problem

$$
\begin{aligned}
& -\kappa \Delta u+\vec{c} \cdot \nabla u=f \quad \text { in } \Omega=[0,1] \times[0,1], \\
& u=g_{D} \quad \text { on } \Gamma=\partial \Omega,
\end{aligned}
$$

with exact solution $u(x, y)=\sin (6 x) \sin (6 y), f$ and g_{D} are derived from this exact solution, $\vec{c}=(-1,1)^{T}$ and κ is the diffusion coefficient.

Diffusion Dominated Problem

Consider the advection-diffusion problem

$$
\begin{aligned}
-\kappa \Delta u+\vec{c} \cdot \nabla u & =f & & \text { in } \Omega=[0,1] \times[0,1], \\
u & =g_{D} & & \text { on } \Gamma
\end{aligned}=\partial \Omega,
$$

with exact solution $u(x, y)=\sin (6 x) \sin (6 y), f$ and g_{D} are derived from this exact solution, $\vec{c}=(-1,1)^{T}$ and κ is the diffusion coefficient.

Convergence rates

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C h^{k+1}
$$

Figure 5: $\left\|u_{H D G}-u_{e}\right\|_{L_{2}}=3.7621 e-4$

Pure Advection Problem

Consider the same problem

$$
\begin{aligned}
-\kappa \Delta u+\vec{c} \cdot \nabla u & =f & & \text { in } \Omega=[0,1] \times[0,1], \\
u & =g_{D} & & \text { on } \Gamma
\end{aligned}=\partial \Omega,
$$

with exact solution $u(x, y)=\sin (6 x) \sin (6 y), f$ and g_{D} are derived from this exact solution, $\vec{c}=(-1,1)^{T}$ and $\kappa=0$.

Figure 6: $\left\|u_{H D G}-u_{e}\right\|_{L_{2}}=3.0956 e-4$

Comparison of the degrees of freedom

$n \times n$ uniform structured triangular mesh

Degrees of freedom for polynomial degree $k=1,3,5$.
Continuous line CG, dashed line DG, Continuous line with circles EDG, dashed line with diamonds HDG

Matrix Sizes Demonstration

Consider the Poisson problem

$$
\begin{aligned}
& -\Delta u=f \quad \text { in } \Omega=[0,1] \times[0,1] \\
& u=g_{D} \quad \text { on } \Gamma=\partial \Omega \text {. }
\end{aligned}
$$

We are going to use the same mesh for all the discretizations.

Figure 7: The mesh

Matrix Properties $k=2$

(a) CG: $\mathrm{n}=1089$, $\mathrm{nnz}=8961$

(c) HDG: $\mathrm{n}=5472, \mathrm{nnz}=76128$

(b) DG: $\mathrm{n}=3072, \mathrm{nnz}=71424$

(d) SC: $n=2400, n n z=34848$

Matrix Sizes $k=5$

Table 1: Matrix size(n) and \#Nonzeros(nnz) for different discretizations of order 5

	n	nnz
CG	6561	199521
DG	10752	874944
HDG	15552	617664
SC	$\underline{4800}$	139392

Matrix Sizes $k=5$

Table 1: Matrix size(n) and \#Nonzeros(nnz) for different discretizations of order 5

	n	$n n z$
CG	6561	199521
DG	10752	874944
HDG	15552	617664
SC	$\underline{4800}$	139392

- Linear system size is smaller than DG, and CG if $k \geq 4$.

Matrix Sizes $k=5$

Table 1: Matrix size(n) and \#Nonzeros(nnz) for different discretizations of order 5

	n	$n n z$
CG	6561	199521
DG	10752	874944
HDG	15552	617664
SC	$\underline{4800}$	139392

- Linear system size is smaller than DG, and CG if $k \geq 4$.
- HDG is stable for advection-dominated flows.

Matrix Sizes $k=5$

Table 1: Matrix size(n) and \#Nonzeros(nnz) for different discretizations of order 5

	n	$n n z$
CG	6561	199521
DG	10752	874944
HDG	15552	617664
SC	$\underline{4800}$	139392

- Linear system size is smaller than DG, and CG if $k \geq 4$.
- HDG is stable for advection-dominated flows.

IPDG-H for ADR Problems

General equation

Consider the general advection-diffusion-reaction problem

$$
\begin{aligned}
\nabla \cdot(-\kappa \nabla u+\vec{b} u)+c u & =f & & \text { in } \Omega, \\
u & =g_{D} & & \text { on } \Gamma=\partial \Omega .
\end{aligned}
$$

General equation

Consider the general advection-diffusion-reaction problem

$$
\begin{aligned}
\nabla \cdot(-\kappa \nabla u+\vec{b} u)+c u & =f & & \text { in } \Omega, \\
u & =g_{D} & & \text { on } \Gamma=\partial \Omega .
\end{aligned}
$$

Rewrite it in mixed form, let $q=-\kappa \nabla u$;

$$
\begin{aligned}
q+\kappa \nabla u & =0 & & \text { in } \Omega, \\
\nabla \cdot(q+\overrightarrow{b u} u)+c u & =f & & \text { in } \Omega, \\
u & =g_{D} & & \text { on } \Gamma=\partial \Omega .
\end{aligned}
$$

Start by meshing the domain $\Omega ; \mathcal{T}=\{K\}$, non-overlapping elements, and,

Start by meshing the domain $\Omega ; \mathcal{T}=\{K\}$, non-overlapping elements, and,
$\mathcal{F}^{i}=\left\{F \mid F=\partial K^{+} \bigcap \partial K^{-}\right\}$and $\mathcal{F}^{b}=\{F \mid F=\partial K \bigcap \partial \Omega\}$, $\mathcal{F}=\mathcal{F}^{i} \cup \mathcal{F}^{b}$.

Assumption; $F \in \mathcal{F}$ has nonzero $(d-1)$ Lebesgue measure, where d is the dimensionality of Ω.

Start by meshing the domain $\Omega ; \mathcal{T}=\{K\}$, non-overlapping elements, and,
$\mathcal{F}^{i}=\left\{F \mid F=\partial K^{+} \bigcap \partial K^{-}\right\}$and $\mathcal{F}^{b}=\{F \mid F=\partial K \bigcap \partial \Omega\}$, $\mathcal{F}=\mathcal{F}^{i} \cup \mathcal{F}^{b}$.

Assumption; $F \in \mathcal{F}$ has nonzero $(d-1)$ Lebesgue measure, where d is the dimensionality of Ω.
$(\cdot, \cdot)_{K}:$ standart $L^{2}(K)$-inner product
$<\cdot, \cdot\rangle_{F}$: standart $L^{2}(F)$-inner product

Start by meshing the domain $\Omega ; \mathcal{T}=\{K\}$, non-overlapping elements, and,
$\mathcal{F}^{i}=\left\{F \mid F=\partial K^{+} \bigcap \partial K^{-}\right\}$and $\mathcal{F}^{b}=\{F \mid F=\partial K \bigcap \partial \Omega\}$, $\mathcal{F}=\mathcal{F}^{i} \cup \mathcal{F}^{b}$.

Assumption; $F \in \mathcal{F}$ has nonzero $(d-1)$ Lebesgue measure, where d is the dimensionality of Ω.
$(\cdot, \cdot)_{K}:$ standart $L^{2}(K)$-inner product
$<\cdot, \cdot\rangle_{F}$: standart $L^{2}(F)$-inner product
$(\cdot, \cdot)_{\Omega}=\sum_{K \in \mathcal{T}}(\cdot, \cdot)_{K}$
$<\cdot, \cdot>_{\partial \Omega}=\sum_{F \in \mathcal{F}}<\cdot, \cdot>_{F}$

Now, define the spaces,

$$
\begin{aligned}
& R_{h}=\left\{r_{h} \in\left[L^{2}(\Omega)\right]^{d}, r_{h} \in\left[P_{k}(K)\right]^{d} \quad \forall K \in \mathcal{T}\right\} \\
& V_{h}=\left\{V_{h} \in L^{2}(\Omega), v_{h} \in P_{k}(K) \quad \forall K \in \mathcal{T}\right\}
\end{aligned}
$$

Now, define the spaces,

$$
\begin{aligned}
& R_{h}=\left\{r_{h} \in\left[L^{2}(\Omega)\right]^{d}, r_{h} \in\left[P_{k}(K)\right]^{d} \quad \forall K \in \mathcal{T}\right\} \\
& V_{h}=\left\{V_{h} \in L^{2}(\Omega), v_{h} \in P_{k}(K) \quad \forall K \in \mathcal{T}\right\}
\end{aligned}
$$

and multiply by test functions r, v over Ω, and integrate,

$$
\begin{aligned}
(q, r)_{\Omega}+(\kappa \nabla u, r)_{\Omega} & =0 \\
\left(\nabla \cdot(q+\vec{b} u)_{,} v\right)_{\Omega}+(c u, v)_{\Omega} & =(f, v)_{\Omega} .
\end{aligned}
$$

Project the boundary conditions to boundary faces and enforce them strongly

Now apply integration by parts wherever it is necessary,

Now apply integration by parts wherever it is necessary,
From first line,

$$
\begin{aligned}
(q, r)_{\Omega} & =(u, \kappa \nabla \cdot r)_{\Omega}-<\widehat{u}, \kappa r \cdot n>_{\partial \Omega} \\
& =-(\kappa \nabla u, r)_{\Omega}+<u-\widehat{u}, \kappa r \cdot n>_{\partial \Omega}
\end{aligned}
$$

Now apply integration by parts wherever it is necessary,
From first line,

$$
\begin{aligned}
(q, r)_{\Omega} & =(u, \kappa \nabla \cdot r)_{\Omega}-<\widehat{u}, \kappa r \cdot n>_{\partial \Omega} \\
& =-(\kappa \nabla u, r)_{\Omega}+<u-\widehat{u}, \kappa r \cdot n>_{\partial \Omega}
\end{aligned}
$$

Second line is longer, consists more terms, hard to keep it tidy,

$$
\begin{aligned}
& -(\vec{b} u, \nabla v)_{\Omega}+<\widehat{\vec{b} u \cdot \vec{n}, v}>_{\partial \Omega} \\
& -(q, \nabla v)_{\Omega}+<\hat{q} \cdot \vec{n}, v>_{\partial \Omega}+(c u, v)_{\Omega}=(f, v)_{\Omega}
\end{aligned}
$$

To reduce the number of these equations, pick $r=\nabla v$ and substitute $(q, r)_{\Omega}$ for $(q, \nabla v)_{\Omega}$

$$
\begin{aligned}
-(\vec{b} u, \nabla v)_{\Omega} & +<\widehat{\vec{b} u \cdot \vec{n}, v}>_{\partial \Omega}+(\kappa \nabla u, \nabla v)_{\Omega} \\
- & <u-\widehat{u}, \kappa \nabla v \cdot n>_{\partial \Omega}+<\hat{q} \cdot \vec{n}, v>_{\partial \Omega}+(c u, v)_{\Omega}=(f, v)_{\Omega} .
\end{aligned}
$$

To reduce the number of these equations, pick $r=\nabla v$ and substitute $(q, r)_{\Omega}$ for $(q, \nabla v)_{\Omega}$

$$
\begin{aligned}
-(\vec{b} u, \nabla v)_{\Omega} & +<\widehat{\vec{b} u \cdot \vec{n}, v}>_{\partial \Omega}+(\kappa \nabla u, \nabla v)_{\Omega} \\
- & <u-\widehat{u}, \kappa \nabla v \cdot n>_{\partial \Omega}+<\hat{q} \cdot \vec{n}, v>_{\partial \Omega}+(c u, v)_{\Omega}=(f, v)_{\Omega} .
\end{aligned}
$$

It might be desirable to keep the mixed form sometimes, i.e. for superconvergent methods with diffusion dominated problems.

To reduce the number of these equations, pick $r=\nabla v$ and substitute $(q, r)_{\Omega}$ for $(q, \nabla v)_{\Omega}$

$$
\begin{aligned}
-(\vec{b} u, \nabla v)_{\Omega} & +<\widehat{\vec{b} u \cdot \vec{n}, v}>_{\partial \Omega}+(\kappa \nabla u, \nabla v)_{\Omega} \\
- & <u-\widehat{u}, \kappa \nabla v \cdot n>_{\partial \Omega}+<\hat{q} \cdot \vec{n}, v>_{\partial \Omega}+(c u, v)_{\Omega}=(f, v)_{\Omega} .
\end{aligned}
$$

It might be desirable to keep the mixed form sometimes, i.e. for superconvergent methods with diffusion dominated problems.

Introduce $\lambda \in M_{h}$, where,

$$
M_{h}=\left\{\mu_{h} \in L^{2}(\mathcal{F}), \mu_{h} \in P_{k}(F) \quad \forall F \in \mathcal{F}\right\}
$$

which is a function that only exists on the faces of the elements.

Define the fluxes using λ, to get IP-HDG derivation,

Define the fluxes using λ, to get IP-HDG derivation,

$$
\begin{aligned}
\widehat{\vec{b} u \cdot \vec{n}} & =\vec{b} u \cdot \vec{n}+\zeta \vec{b} \cdot \vec{n}(\lambda-u)=(1-\zeta) \vec{b} u \cdot \vec{n}+\zeta \vec{b} \cdot \vec{n} \lambda, \\
\widehat{u} & =\lambda, \\
\hat{q} & =-\kappa \nabla u-\frac{\alpha}{h_{K}} \kappa \vec{n}(\lambda-u),
\end{aligned}
$$

where ζ is an indicator function for interelement boundary (1 for inflow, 0 for outflow).

Define the fluxes using λ, to get IP-HDG derivation,

$$
\begin{aligned}
\widehat{\vec{b} u \cdot \vec{n}} & =\vec{b} u \cdot \vec{n}+\zeta \vec{b} \cdot \vec{n}(\lambda-u)=(1-\zeta) \vec{b} u \cdot \vec{n}+\zeta \vec{b} \cdot \vec{n} \lambda, \\
\widehat{u} & =\lambda, \\
\hat{q} & =-\kappa \nabla u-\frac{\alpha}{h_{K}} \kappa \vec{n}(\lambda-u),
\end{aligned}
$$

where ζ is an indicator function for interelement boundary (1 for inflow, 0 for outflow).

2 unknowns: λ and $u, 1$ equation!

Define the fluxes using λ, to get IP-HDG derivation,

$$
\begin{aligned}
\widehat{\vec{b} u \cdot \vec{n}} & =\vec{b} u \cdot \vec{n}+\zeta \vec{b} \cdot \vec{n}(\lambda-u)=(1-\zeta) \vec{b} u \cdot \vec{n}+\zeta \vec{b} \cdot \vec{n} \lambda, \\
\widehat{u} & =\lambda, \\
\hat{q} & =-\kappa \nabla u-\frac{\alpha}{h_{K}} \kappa \vec{n}(\lambda-u),
\end{aligned}
$$

where ζ is an indicator function for interelement boundary (1 for inflow, 0 for outflow).

2 unknowns: λ and $u, 1$ equation! Enforce continuity of the fluxes through faces;

$$
\left(<\widehat{\vec{b} u \cdot \vec{n}, \mu}>_{\partial \Omega}+<\hat{q} \cdot \vec{n}, \mu>_{\partial \Omega}\right)=0 .
$$

Weak formulation

Find $(u, \lambda) \in V_{h} \times M_{h}$ s.t. $\forall(v, \mu) \in V_{h} \times M_{h}$,

$$
\begin{aligned}
-(\vec{b} u, \nabla v)_{\Omega} & +<\widehat{\vec{b} u \cdot \vec{n}, v}>_{\partial \Omega}+(\kappa \nabla u, \nabla v)_{\Omega} \\
- & <u-\widehat{u}, \kappa \nabla v \cdot n>_{\partial \Omega}+<\hat{q} \cdot \vec{n}, v>_{\partial \Omega}+(c u, v)_{\Omega}=(f, v)_{\Omega},
\end{aligned}
$$

and,

$$
-\left(<\widehat{\vec{b} u \cdot \vec{n}, \mu}>_{\partial \Omega}+<\hat{q} \cdot \vec{n}, \mu>_{\partial \Omega}\right)=0 .
$$

Block structure

Contents of each block,

$$
\left[\begin{array}{ll}
{[0]} & {[1]} \\
{[2]} & {[3]}
\end{array}\right]=\left[\begin{array}{ll}
(u, v) & (\lambda, v) \\
(u, \mu) & (\lambda, \mu)
\end{array}\right] .
$$

Reminder: First block is block diagonal, so Schur complement of this system is easy to compute.

Advantages

- Smaller linear system to solve
- Usually more accurate
- Better conditioned

Advantages

- Smaller linear system to solve
- Usually more accurate
- Better conditioned

Better for fluid dynamics problems;

- H(div)-conforming spaces
- Exactly pointwise divergence free velocity fields (incompressibility)
- Mass conservation
- Momentum conservation
- Energy stability (transient problems)

IPDG-H for the Stokes Problem

The Stokes Problem

Given $I=\left(t_{0}, t_{f}\right], f: \Omega \times I \rightarrow \mathbb{R}^{d}$ and $u_{0}=\Omega \times t_{0} \rightarrow \mathbb{R}^{d}$, the Stokes problem for $u: \Omega \times I \rightarrow \mathbb{R}^{d}$ is

$$
\begin{aligned}
\partial_{t} u+\nabla \cdot \sigma & =f & & \text { in } \Omega, \\
\nabla \cdot u & =0 & & \text { in } \Omega, \\
u & =0 & & \text { on } \Gamma=\partial \Omega, \\
\int_{\Omega} p d x & =0, & &
\end{aligned}
$$

where $\sigma=p \mathbb{I}-\nabla u$.

Define the spaces,

$$
\begin{aligned}
& V_{h}=\left\{v_{h} \in\left[L^{2}(\mathcal{T})\right]^{d}, v_{h} \in\left[P_{k}(K)\right]^{d} \quad \forall K \in \mathcal{T}\right\} \\
& \bar{V}_{h}=\left\{\bar{v}_{h} \in\left[L^{2}(\mathcal{F})\right]^{d}, \bar{v}_{h} \in\left[P_{k}(F)\right]^{d} \quad \forall F \in \mathcal{F}\right\} \\
& Q_{h}=\left\{q_{h} \in L^{2}(\mathcal{T}), q_{h} \in P_{k-1}(K) \quad \forall K \in \mathcal{T}\right\} \\
& \bar{Q}_{h}=\left\{\bar{q}_{h} \in L^{2}(\mathcal{F}), \bar{q}_{h} \in P_{k}(F) \quad \forall F \in \mathcal{F}\right\}
\end{aligned}
$$

Weak formulation

Find $(u, \bar{u}, p, \bar{p}) \in V_{h} \times \bar{V}_{h} \times Q_{h} \times \bar{Q}_{h}$ s.t.
$\forall(v, \bar{v}, q, \bar{q}) \in V_{h} \times \bar{V}_{h} \times Q_{h} \times \bar{Q}_{h}$,

$$
\begin{aligned}
\sum_{K \in \mathcal{T}} \int_{K} \nabla u: & \nabla v \mathrm{~d} x+\sum_{K \in \mathcal{T}} \int_{\partial K}(\bar{u}-u) \cdot \frac{\partial v}{\partial n} \mathrm{~d} s-\sum_{K \in \mathcal{T}} \int_{K} p \nabla \cdot v \mathrm{~d} x \\
& +\sum_{K \in \mathcal{T}} \int_{\partial K} \hat{\sigma} n \cdot(v-\bar{v}) \cdot \mathrm{d} s=\sum_{K \in \mathcal{T}} \int_{K} f \cdot v \mathrm{~d} x
\end{aligned}
$$

and

$$
\sum_{K \in \mathcal{T}} \int_{K} u \cdot \nabla q \mathrm{~d} x+\sum_{K \in \mathcal{T}} \int_{\partial K} \hat{u} \cdot n(\bar{q}-q) \mathrm{d} s-\int_{\Gamma} \bar{u} \cdot n \bar{q} \mathrm{~d} s=0 .
$$

Numerical Fluxes

$$
\begin{aligned}
\hat{\sigma} & =-\nabla u+\bar{p} I-\frac{\alpha_{v}}{h_{K}}(\bar{u}-u) \otimes n \\
\hat{u} & =u-\alpha_{p} h_{K}(\bar{p}-p) n
\end{aligned}
$$

Numerical Fluxes

$$
\begin{aligned}
\hat{\sigma} & =-\nabla u+\bar{p} I-\frac{\alpha_{v}}{h_{K}}(\bar{u}-u) \otimes n \\
\hat{u} & =u-\alpha_{p} h_{K}(\bar{p}-p) n
\end{aligned}
$$

$$
\begin{aligned}
V_{h} & =\left\{v_{h} \in\left[L^{2}(\mathcal{T})\right]^{d}, v_{h} \in\left[P_{k}(K)\right]^{d} \quad \forall K \in \mathcal{T}\right\} \\
Q_{h} & =\left\{q_{h} \in L^{2}(\mathcal{T}), q_{h} \in P_{k-1}(K) \quad \forall K \in \mathcal{T}\right\}
\end{aligned}
$$

α_{p} can be set to zero.

Some Insights to Weak Formulation

$$
\begin{aligned}
\sum_{K \in \mathcal{T}} \int_{K} \nabla u: & \nabla v \mathrm{~d} x+\sum_{K \in \mathcal{T}} \int_{\partial K}(\bar{u}-u) \cdot \frac{\partial v}{\partial n} \mathrm{~d} s-\sum_{K \in \mathcal{T}} \int_{K} p \nabla \cdot v \mathrm{~d} x \\
& +\sum_{K \in \mathcal{T}} \int_{\partial K} \hat{\sigma} n \cdot(v-\bar{v}) \cdot \mathrm{d} s=\sum_{K \in \mathcal{T}} \int_{K} f \cdot v \mathrm{~d} x
\end{aligned}
$$

Some Insights to Weak Formulation

$$
\begin{aligned}
\sum_{K \in \mathcal{T}} \int_{K} \nabla u: & \nabla v \mathrm{~d} x+\sum_{K \in \mathcal{T}} \int_{\partial K}(\bar{u}-u) \cdot \frac{\partial v}{\partial n} \mathrm{~d} s-\sum_{K \in \mathcal{T}} \int_{K} p \nabla \cdot v \mathrm{~d} x \\
& +\sum_{K \in \mathcal{T}} \int_{\partial K} \hat{\sigma} n \cdot(v-\bar{v}) \cdot \mathrm{d} s=\sum_{K \in \mathcal{T}} \int_{K} f \cdot v \mathrm{~d} x
\end{aligned}
$$

Setting $\bar{v}=0$, momentum balance subject to b.c. provided by \bar{u}

Some Insights to Weak Formulation

$$
\begin{aligned}
\sum_{K \in \mathcal{T}} \int_{K} \nabla u: & \nabla v \mathrm{~d} x+\sum_{K \in \mathcal{T}} \int_{\partial K}(\bar{u}-u) \cdot \frac{\partial v}{\partial n} \mathrm{~d} s-\sum_{K \in \mathcal{T}} \int_{K} p \nabla \cdot v \mathrm{~d} x \\
& +\sum_{K \in \mathcal{T}} \int_{\partial K} \hat{\sigma} n \cdot(v-\bar{v}) \cdot \mathrm{d} s=\sum_{K \in \mathcal{T}} \int_{K} f \cdot v \mathrm{~d} x
\end{aligned}
$$

Setting $\bar{v}=0$, momentum balance subject to b.c. provided by \bar{u}
Setting $v=0$, weak continuity of $\hat{\sigma}$ across facets

Some Insights to Weak Formulation

$\sum_{K \in \mathcal{T}} \int_{K} u \cdot \nabla q \mathrm{~d} x+\sum_{K \in \mathcal{T}} \int_{\partial K} \hat{u} \cdot n(\bar{q}-q) \mathrm{d} s-\int_{\Gamma} \bar{u} \cdot n \bar{q} \mathrm{~d} s=0$.

Some Insights to Weak Formulation

$$
\sum_{K \in \mathcal{T}} \int_{K} u \cdot \nabla q \mathrm{~d} x+\sum_{K \in \mathcal{T}} \int_{\partial K} \hat{u} \cdot n(\bar{q}-q) \mathrm{d} s-\int_{\Gamma} \bar{u} \cdot n \bar{q} \mathrm{~d} s=0 .
$$

Setting $\bar{q}=0$, enforcing the continuity equation locally

Some Insights to Weak Formulation

$$
\sum_{K \in \mathcal{T}} \int_{K} u \cdot \nabla q \mathrm{~d} x+\sum_{K \in \mathcal{T}} \int_{\partial K} \hat{u} \cdot n(\bar{q}-q) \mathrm{d} s-\int_{\Gamma} \bar{u} \cdot n \bar{q} \mathrm{~d} s=0 .
$$

Setting $\bar{q}=0$, enforcing the continuity equation locally
Setting $q=0$, weak continuity of \hat{u} across facets

Properties

$H(d i v)$-conforming: normal component of u is continuous across inter-element boundaries

Properties

$H(d i v)$-conforming: normal component of u is continuous across inter-element boundaries

Set $v, \bar{v}, q=0$ and sum the weak formulation equations to see.

Properties

$H($ div $)$-conforming: normal component of u is continuous across inter-element boundaries

Set $v, \bar{v}, q=0$ and sum the weak formulation equations to see.
Pointwise divergence-free: $\nabla \cdot u=0$

Properties

$H($ div $)$-conforming: normal component of u is continuous across inter-element boundaries

Set $v, \bar{v}, q=0$ and sum the weak formulation equations to see.
Pointwise divergence-free: $\nabla \cdot u=0$
Since $q, \nabla \cdot u \in P_{k-1}(K)$, it follows.

Properties

$H($ div $)$-conforming: normal component of u is continuous across inter-element boundaries

Set $v, \bar{v}, q=0$ and sum the weak formulation equations to see.
Pointwise divergence-free: $\nabla \cdot u=0$
Since $q, \nabla \cdot u \in P_{k-1}(K)$, it follows.
Mass Conservation: $[[u]]=0$ at interior faces and $u \cdot n=\bar{u} \cdot n$ at boundary faces.

Properties

$H($ div $)$-conforming: normal component of u is continuous across inter-element boundaries

Set $v, \bar{v}, q=0$ and sum the weak formulation equations to see.
Pointwise divergence-free: $\nabla \cdot u=0$
Since $q, \nabla \cdot u \in P_{k-1}(K)$, it follows.
Mass Conservation: $[[u]]=0$ at interior faces and $u \cdot n=\bar{u} \cdot n$ at boundary faces.

Momemtum Conservation: $\frac{d}{d t} \int_{K} u \mathrm{~d} x=\int_{K} f \mathrm{~d} x-\int_{\partial K} \hat{\sigma} n \mathrm{~d} s$

Properties

$H($ div $)$-conforming: normal component of u is continuous across inter-element boundaries

Set $v, \bar{v}, q=0$ and sum the weak formulation equations to see.
Pointwise divergence-free: $\nabla \cdot u=0$
Since $q, \nabla \cdot u \in P_{k-1}(K)$, it follows.
Mass Conservation: $[[u]]=0$ at interior faces and $u \cdot n=\bar{u} \cdot n$ at boundary faces.

Momemtum Conservation: $\frac{d}{d t} \int_{K} u \mathrm{~d} x=\int_{K} f \mathrm{~d} x-\int_{\partial K} \hat{\sigma} n \mathrm{~d} s$
Global energy stability: $\frac{d}{d t} \int_{K}|u|^{2} \mathrm{~d} x \leq 0$.

