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(Not so) Brief Overview



Steady state problem

General second order PDE

u ∈ C 2(Ω) ∩ C 1(Ω) (Ω ⊂ Rd , d ≥ 1 bounded open domain)

−∇ · ν∇u +∇ · (bu) = f in Ω ,

u = 0 on Γ .

Possible discretizations

1. Finite Difference Method: use ∂xu(xi ) ≈ u(xi+h)−u(xi )
h with ”fixed” h

2. Finite Volume Method: use the integral form of the equation

3. Finite Element Method: use the weak form
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F?M

FDM

• easy to implement

• higher order is

complicated

• complicated for

complex geometry

or unstructured

mesh

• not conservative

FVM

• conservative

discretization
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for convection
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Weak form & Classical Galerkin

Weak form

−∇ · ν∇u +∇ · (bu) = f in Ω

multiply by v and IBP∫
Ω

ν∇u · ∇v −
∫

Ω

ub · ∇v + BC︸ ︷︷ ︸
a(u,v)

=

∫
Ω

fv︸ ︷︷ ︸
l(v)

Only the first derivative appears in the formula

u, v ∈ V = H1
0 (Ω) = {v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]d , v |Γ = 0}
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Finite Element Methods

?u ∈ V : a(u, v) = l(v) ∀v ∈ V

• V is infinite dimensional

• Restrict to a finite dimensional subspace Vh ⊂ V

• Th: mesh over Ω, Vh: piecewise polynomials that are continuous

Vh = {v ∈ L2(Ω) : v ∈ Pk(K ),∀K ∈ Th} ∩ C (Ω)

• Basis with compact support

• Easy to integrate

• Easy to go for high polynomial degree
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Linear system

Choose a basis of Vh : {Φi , · · · ,ΦN}

Seek the coefficients {ci} such that uh =
∑N

i=1 ciΦi

Linear system

Ac = b

where

• Ai,j = a(Φj ,Φi )

• bi = l(Φi )

• A is very sparse

• Direct or iterative solver?

• Size vs condition number
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Degrees of Freedoms in 2D

k = 1

k = 2 k = 3
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Diffusion Dominated Problem

Consider the advection-diffusion problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ is the diffusion coefficient.

Convergence rates

‖u − uh‖L2(Ω) ≤ Chk+1
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κ = 1

Figure 1: ||uCG − ue ||L2 = 4.7704e − 4
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Pure Advection Problem

Consider the same problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ=0.
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κ = 0

Figure 2: ||uCG − ue ||L2 = 7.02071
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DG



Possible improvement: DG

FVM

• numerical fluxes over the

elements

• upwind flux

CG

• higher order discretization

DG

• derive weak form starting from one element

• connection between elements via fluxes

• higher order discretization
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Mesh first

Rewrite −∇ · ν∇u +∇ · (bu) = f using q = −∇u

First order system

ν∇ · q +∇ · (bu) = f

q +∇u = 0

IBP on mesh element K + discretization∫
K

fwh =−
∫
K

νqh · ∇wh +

∫
∂K

νq̂h · nwh

−
∫
K

uhb · ∇wh +

∫
∂K

whûhb · n∫
K

qh · vh =−
∫
K

∇uh · vh +

∫
∂K

(uh − ûh)vh · n
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1 equation or 2 equations?

If v = ν∇wh∫
K

fwh =

∫
K

ν∇uh · ∇wh +

∫
∂K

(ûh − uh)ν∇wh · n +

∫
∂K

νq̂h · nwh

−
∫
K

uhb · ∇wh +

∫
∂K

whûhb · n

Summing over all K ∈ Th

The interior faces will show up twice
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Choice of the numerical flux

Advection

Use upwinding

ûh =

{
uL if b · n ≥ 0

uR if b · n < 0

Diffusion part

Plenty of possibilities (see Brezzi-Marini survey)

Interior penalty: q̂h = ∇uL +
α

h
[[uh]] n = ∇uL +

α

h
(uL − uR)n

Example with 2 equations: Local DG: q̂h = qL + τ(uL − uR)n

15
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Upwind in 2D

uL

u1
R

n1

u2
R

n2

u3
R

n3

b

b

b

uLu2
R

u1
R
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IP discretization

IP approximate weak form

Seek uh ∈ Vh such that aDG (uh, vh) = lDG (vh) for all vh ∈ Vh.

Looks like CG, but it is totally different

IP notations

aDG (uh, vh) =
∑
K∈Th

∫
K

ν∇uh · ∇wh −
∑
K∈Th

∫
∂K

uhb · ∇vh

+ interior face terms

lDG (vh) =
∑
K∈Th

∫
K

fvh + BC

Vh ={v ∈ L2(Ω) : v ∈ Pk(K ),∀K ∈ Th}

17
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2D DG basis functions

k = 1

k = 2 k = 3
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2D DG basis functions

k = 1 k = 2

k = 3
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2D DG basis functions

k = 1 k = 2 k = 3
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CG vs DG pros and cons

CG

• lower number of degrees of

freedom

• diffusion dominated cases are

easier to solve by iterative

methods

• fails for convection dominated

cases

• hard to do hp adaptivity: the

unknowns on different elements

are connected

DG

• higher number of degrees of

freedom

• harder to solve with an iterative

solver

• works better for convection

dominated cases

• hp adaptivity is easy: the

unknowns on different elements

are not connected

19
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Diffusion Dominated Problem

Consider the advection-diffusion problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ is the diffusion coefficient.

Convergence rates

‖u − uh‖L2(Ω) ≤ Chk+1

20
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κ = 1

Figure 3: ||uDG − ue ||L2 = 3.8546e − 4
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Pure Advection Problem

Consider the same problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ=0.

22



κ = 0

Figure 4: ||uDG − ue ||L2 = 3.0956e − 4
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Idea of HDG



Hybridizable DG

DG

• derive weak form on one element

• connection between elements via fluxes

HDG

• derive weak form on one element

• additional unknowns on the edges

• connection between elements via fluxes that uses functions on the

edges
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HDG

uh ∈ Vh =
{
vh ∈ L2(Ω), vh ∈ Pk(K ) ∀K ∈ Th

}
uh ∈ V h =

{
vh ∈ L2(F), vh ∈ Pk(F ) ∀F ∈ F

}
25



HDG fluxes

DG fluxes

Advection: upwinding

Diffusion Interior penalty or Local DG or one of the many

HDG fluxes

Advection: ûh =

{
uL if b · n ≥ 0

u if b · n < 0

Diffusion IP: q̂h = ∇uL +
α

h
(uL − u)n

Local DG: q̂h = qL + τ(uL − u)n
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Upwind for HDG
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2 unknowns but only 1 equation

Solve −u′′ = 1, u(−1) = u(1) = 0 as

How to choose u?

−u′′ = 1 on (−1, 0) −u′′ =1 on (0, 1)

u(−1) = 0 u(0) =u

u(0) = u u(1) =0

u = 0.25 u = 0.5 u = 0.75

Continuous flux

Equation for u: to ensure a continuous flux

28
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HDG Degrees of Freedom

k = 1

k = 2 k = 3
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Linear problem

Weak form

Seek (uh, uh) ∈ Vh × V h such that forall (vh, vh) ∈ Vh × V h

aHDG ((uh, uh), (vh, vh)) = lHDG (vh, vh)

Linear system System form

aII (uh, vh) + aFI (uh, vh) = lI (vh)

aIF (uh, vh) + aFF (uh, vh) = lF (vh)

Block system [
A B

C D

][
U

U

]
=

[
F

G

]

30
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Schur-complement

A is block diagonal

AU + BU = F

CU + DU = G
⇔

U = A−1(F − BU)

CA−1(F − BU) + DU = G

Solution in two steps

(D − CA−1B)U = G − CA−1F

U = A−1(F − BU)

31
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Diffusion Dominated Problem

Consider the advection-diffusion problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ is the diffusion coefficient.

Convergence rates

‖u − uh‖L2(Ω) ≤ Chk+1
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κ = 1

Figure 5: ||uHDG − ue ||L2 = 3.7621e − 4
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Pure Advection Problem

Consider the same problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ=0.
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κ = 0

Figure 6: ||uHDG − ue ||L2 = 3.0956e − 4
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Comparison of the degrees of freedom

n × n uniform structured triangular mesh
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1

2

3

4.5
10

7 k = 1

100 500 1000

1

2

3

4.5
10
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7 k = 5

Degrees of freedom for polynomial degree k = 1, 3, 5.

Continuous line CG, dashed line DG, Continuous line with circles EDG,

dashed line with diamonds HDG
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Matrix Sizes Demonstration

Consider the Poisson problem

−∆u = f in Ω = [0, 1]× [0, 1]

u = gD on Γ = ∂Ω.

We are going to use the same mesh for all the discretizations.

37



Figure 7: The mesh
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Matrix Properties k = 2

(a) CG: n=1089, nnz=8961 (b) DG: n=3072, nnz=71424

(c) HDG: n=5472, nnz=76128 (d) SC: n=2400, nnz=34848
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Matrix Sizes k = 5

Table 1: Matrix size(n) and #Nonzeros(nnz) for different discretizations of

order 5

n nnz

CG 6561 199521

DG 10752 874944

HDG 15552 617664

SC 4800 139392

• Linear system size is smaller than DG, and CG if k ≥ 4.

• HDG is stable for advection-dominated flows.
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IPDG-H for ADR Problems



General equation

Consider the general advection-diffusion-reaction problem

∇ · (−κ∇u + ~bu) + cu = f in Ω,

u = gD on Γ = ∂Ω.

Rewrite it in mixed form, let q = −κ∇u;

q + κ∇u = 0 in Ω,

∇ · (q + ~bu) + cu = f in Ω,

u = gD on Γ = ∂Ω.
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Start by meshing the domain Ω; T = {K}, non-overlapping elements,

and,

F i = {F |F = ∂K+
⋂
∂K−} and Fb = {F |F = ∂K

⋂
∂Ω},

F = F i
⋃
Fb.

Assumption; F ∈ F has nonzero (d − 1) Lebesgue measure, where d is

the dimensionality of Ω.

(·, ·)K : standart L2(K )-inner product

< ·, · >F : standart L2(F )-inner product

(·, ·)Ω =
∑

K∈T (·, ·)K

< ·, · >∂Ω=
∑

F∈F < ·, · >F
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Now, define the spaces,

Rh = {rh ∈
[
L2(Ω)

]d
, rh ∈ [Pk(K )]d ∀K ∈ T }

Vh = {Vh ∈ L2(Ω), vh ∈ Pk(K ) ∀K ∈ T }

and multiply by test functions r , v over Ω, and integrate,

(q, r)Ω + (κ∇u, r)Ω = 0

(∇ · (q + ~bu), v)Ω + (cu, v)Ω = (f , v)Ω.

Project the boundary conditions to boundary faces and enforce them

strongly

43
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Now apply integration by parts wherever it is necessary,

From first line,

(q, r)Ω = (u, κ∇ · r)Ω− < û, κr · n >∂Ω

= −(κ∇u, r)Ω+ < u − û, κr · n >∂Ω .

Second line is longer, consists more terms, hard to keep it tidy,

− (~bu,∇v)Ω+ < ~̂bu · ~n, v >∂Ω

− (q,∇v)Ω+ < q̂ · ~n, v >∂Ω +(cu, v)Ω = (f , v)Ω.
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To reduce the number of these equations, pick r = ∇v and substitute

(q, r)Ω for (q,∇v)Ω

−(~bu,∇v)Ω+ < ~̂bu · ~n, v >∂Ω +(κ∇u,∇v)Ω

− < u − û, κ∇v · n >∂Ω + < q̂ · ~n, v >∂Ω +(cu, v)Ω = (f , v)Ω.

It might be desirable to keep the mixed form sometimes, i.e. for

superconvergent methods with diffusion dominated problems.

Introduce λ ∈ Mh, where,

Mh = {µh ∈ L2(F), µh ∈ Pk(F ) ∀F ∈ F}

which is a function that only exists on the faces of the elements.
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Define the fluxes using λ, to get IP-HDG derivation,

~̂bu · ~n = ~bu · ~n + ζ~b · ~n (λ− u) = (1− ζ) ~bu · ~n + ζ~b · ~nλ,
û = λ,

q̂ = −κ∇u − α

hK
κ~n(λ− u),

where ζ is an indicator function for interelement boundary (1 for inflow, 0

for outflow).

2 unknowns: λ and u, 1 equation! Enforce continuity of the fluxes

through faces;

(
< ~̂bu · ~n, µ >∂Ω + < q̂ · ~n, µ >∂Ω

)
= 0.
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2 unknowns: λ and u, 1 equation! Enforce continuity of the fluxes

through faces;

(
< ~̂bu · ~n, µ >∂Ω + < q̂ · ~n, µ >∂Ω

)
= 0.
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Weak formulation

Find (u, λ) ∈ Vh ×Mh s.t. ∀(v , µ) ∈ Vh ×Mh,

−(~bu,∇v)Ω+ < ~̂bu · ~n, v >∂Ω +(κ∇u,∇v)Ω

− < u − û, κ∇v · n >∂Ω + < q̂ · ~n, v >∂Ω +(cu, v)Ω = (f , v)Ω,

and,

−
(
< ~̂bu · ~n, µ >∂Ω + < q̂ · ~n, µ >∂Ω

)
= 0.
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Block structure

Contents of each block,[
[0] [1]

[2] [3]

]
=

[
(u, v) (λ, v)

(u, µ) (λ, µ)

]
.

Reminder: First block is block diagonal, so Schur complement of this

system is easy to compute.
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Advantages

• Smaller linear system to solve

• Usually more accurate

• Better conditioned

Better for fluid dynamics problems;

• H(div)-conforming spaces

• Exactly pointwise divergence free velocity fields (incompressibility)

• Mass conservation

• Momentum conservation

• Energy stability (transient problems)
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IPDG-H for the Stokes Problem



The Stokes Problem

Given I = (t0, tf ], f : Ω×I → Rd and u0 = Ω×t0 → Rd , the Stokes

problem for u : Ω×I → Rd is

∂tu +∇ · σ = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ = ∂Ω,∫
Ω

pdx= 0,

where σ = pI−∇u.
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Define the spaces,

Vh = {vh ∈
[
L2(T )

]d
, vh ∈ [Pk(K )]d ∀K ∈ T }

V̄h = {v̄h ∈
[
L2(F)

]d
, v̄h ∈ [Pk(F )]d ∀F ∈ F}

Qh = {qh ∈ L2(T ), qh ∈ Pk−1(K ) ∀K ∈ T }
Q̄h = {q̄h ∈ L2(F), q̄h ∈ Pk(F ) ∀F ∈ F}
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Weak formulation

Find (u, ū, p, p̄) ∈ Vh × V̄h × Qh × Q̄h s.t.

∀(v , v̄ , q, q̄) ∈ Vh × V̄h × Qh × Q̄h,

∑
K∈T

∫
K

∇u : ∇v dx +
∑
K∈T

∫
∂K

(ū − u) · ∂v
∂n

ds −
∑
K∈T

∫
K

p∇ · v dx

+
∑
K∈T

∫
∂K

σ̂n · (v − v̄) · ds =
∑
K∈T

∫
K

f · v dx

and ∑
K∈T

∫
K

u · ∇q dx +
∑
K∈T

∫
∂K

û · n(q̄ − q) ds −
∫

Γ

ū · nq̄ ds = 0.
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Numerical Fluxes

σ̂ = −∇u + p̄I − αv

hK
(ū − u)⊗ n,

û = u − αphK (p̄ − p)n.

Vh = {vh ∈
[
L2(T )

]d
, vh ∈ [Pk(K )]d ∀K ∈ T }

Qh = {qh ∈ L2(T ), qh ∈ Pk−1(K ) ∀K ∈ T }

αp can be set to zero.
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(ū − u)⊗ n,
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Some Insights to Weak Formulation

∑
K∈T

∫
K

∇u : ∇v dx +
∑
K∈T

∫
∂K

(ū − u) · ∂v
∂n

ds −
∑
K∈T

∫
K

p∇ · v dx

+
∑
K∈T

∫
∂K

σ̂n · (v − v̄) · ds =
∑
K∈T

∫
K

f · v dx

Setting v̄ = 0, momentum balance subject to b.c. provided by ū

Setting v = 0, weak continuity of σ̂ across facets
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Some Insights to Weak Formulation

∑
K∈T

∫
K

u · ∇q dx +
∑
K∈T

∫
∂K

û · n(q̄ − q) ds −
∫

Γ

ū · nq̄ ds = 0.

Setting q̄ = 0, enforcing the continuity equation locally

Setting q = 0, weak continuity of û across facets
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û · n(q̄ − q) ds −
∫

Γ
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Properties

H(div)-conforming: normal component of u is continuous across

inter-element boundaries

Set v , v̄ , q = 0 and sum the weak formulation equations to see.

Pointwise divergence-free: ∇ · u = 0

Since q,∇ · u ∈ Pk−1(K ), it follows.

Mass Conservation: [[u]] = 0 at interior faces and u · n = ū · n at

boundary faces.

Momemtum Conservation: d
dt

∫
K
u dx =

∫
K
f dx −

∫
∂K
σ̂n ds

Global energy stability: d
dt

∫
K
|u|2 dx ≤ 0.

56



Properties

H(div)-conforming: normal component of u is continuous across

inter-element boundaries

Set v , v̄ , q = 0 and sum the weak formulation equations to see.

Pointwise divergence-free: ∇ · u = 0

Since q,∇ · u ∈ Pk−1(K ), it follows.

Mass Conservation: [[u]] = 0 at interior faces and u · n = ū · n at
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boundary faces.

Momemtum Conservation: d
dt

∫
K
u dx =

∫
K
f dx −

∫
∂K
σ̂n ds

Global energy stability: d
dt

∫
K
|u|2 dx ≤ 0.

56



Properties

H(div)-conforming: normal component of u is continuous across

inter-element boundaries

Set v , v̄ , q = 0 and sum the weak formulation equations to see.

Pointwise divergence-free: ∇ · u = 0

Since q,∇ · u ∈ Pk−1(K ), it follows.

Mass Conservation: [[u]] = 0 at interior faces and u · n = ū · n at
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