
Introduction to Hybridized Discontinuous

Galerkin (HDG) Methods

Abdullah Ali Sivas

December 21, 2017



Table of contents

1. (Not so) Brief Overview

2. Discontinuous Galerkin

3. Idea of Hybridizable Discontinuous Galerkin

4. IPDG-H for Advection-Diffusion-Reaction Problems

5. IPDG-H for the Stokes Problem

1



(Not so) Brief Overview



Steady state problem

General second order PDE

u ∈ C 2(Ω) ∩ C 1(Ω) (Ω ⊂ Rd , d ≥ 1 bounded open domain)

−∇ · ν∇u +∇ · (bu) = f in Ω ,

u = 0 on Γ .

Possible discretizations

1. Finite Difference Method: use ∂xu(xi ) ≈ u(xi+h)−u(xi )
h with ”fixed” h

2. Finite Volume Method: use the integral form of the equation

3. Finite Element Method: use the weak form

2



Steady state problem

General second order PDE

u ∈ C 2(Ω) ∩ C 1(Ω) (Ω ⊂ Rd , d ≥ 1 bounded open domain)

−∇ · ν∇u +∇ · (bu) = f in Ω ,

u = 0 on Γ .

Possible discretizations

1. Finite Difference Method: use ∂xu(xi ) ≈ u(xi+h)−u(xi )
h with ”fixed” h

2. Finite Volume Method: use the integral form of the equation

3. Finite Element Method: use the weak form

2



Steady state problem

General second order PDE

u ∈ C 2(Ω) ∩ C 1(Ω) (Ω ⊂ Rd , d ≥ 1 bounded open domain)

−∇ · ν∇u +∇ · (bu) = f in Ω ,

u = 0 on Γ .

Possible discretizations

1. Finite Difference Method: use ∂xu(xi ) ≈ u(xi+h)−u(xi )
h with ”fixed” h

2. Finite Volume Method: use the integral form of the equation

3. Finite Element Method: use the weak form

2



Steady state problem

General second order PDE

u ∈ C 2(Ω) ∩ C 1(Ω) (Ω ⊂ Rd , d ≥ 1 bounded open domain)

−∇ · ν∇u +∇ · (bu) = f in Ω ,

u = 0 on Γ .

Possible discretizations

1. Finite Difference Method: use ∂xu(xi ) ≈ u(xi+h)−u(xi )
h with ”fixed” h

2. Finite Volume Method: use the integral form of the equation

3. Finite Element Method: use the weak form

2



Steady state problem

General second order PDE

u ∈ C 2(Ω) ∩ C 1(Ω) (Ω ⊂ Rd , d ≥ 1 bounded open domain)

−∇ · ν∇u +∇ · (bu) = f in Ω ,

u = 0 on Γ .

Possible discretizations

1. Finite Difference Method: use ∂xu(xi ) ≈ u(xi+h)−u(xi )
h with ”fixed” h

2. Finite Volume Method: use the integral form of the equation

3. Finite Element Method: use the weak form

2



F?M

FDM

• easy to implement

• higher order is

complicated

• complicated for

complex geometry

or unstructured

mesh

• not conservative

FVM

• conservative

discretization

• higher order is

complicated

• complicated for

unstructured grid

FEM

• higher order is easy

• unstructured grid is

not a problem

• not conservative

• poor performance

for convection

dominated

problems

3



F?M

FDM

• easy to implement

• higher order is

complicated

• complicated for

complex geometry

or unstructured

mesh

• not conservative

FVM

• conservative

discretization

• higher order is

complicated

• complicated for

unstructured grid

FEM

• higher order is easy

• unstructured grid is

not a problem

• not conservative

• poor performance

for convection

dominated

problems

3



F?M

FDM

• easy to implement

• higher order is

complicated

• complicated for

complex geometry

or unstructured

mesh

• not conservative

FVM

• conservative

discretization

• higher order is

complicated

• complicated for

unstructured grid

FEM

• higher order is easy

• unstructured grid is

not a problem

• not conservative

• poor performance

for convection

dominated

problems

3



F?M

FDM

• easy to implement

• higher order is

complicated

• complicated for

complex geometry

or unstructured

mesh

• not conservative

FVM

• conservative

discretization

• higher order is

complicated

• complicated for

unstructured grid

FEM

• higher order is easy

• unstructured grid is

not a problem

• not conservative

• poor performance

for convection

dominated

problems

3



F?M

FDM

• easy to implement

• higher order is

complicated

• complicated for

complex geometry

or unstructured

mesh

• not conservative

FVM

• conservative

discretization

• higher order is

complicated

• complicated for

unstructured grid

FEM

• higher order is easy

• unstructured grid is

not a problem

• not conservative

• poor performance

for convection

dominated

problems

3



F?M

FDM

• easy to implement

• higher order is

complicated

• complicated for

complex geometry

or unstructured

mesh

• not conservative

FVM

• conservative

discretization

• higher order is

complicated

• complicated for

unstructured grid

FEM

• higher order is easy

• unstructured grid is

not a problem

• not conservative

• poor performance

for convection

dominated

problems

3



F?M

FDM

• easy to implement

• higher order is

complicated

• complicated for

complex geometry

or unstructured

mesh

• not conservative

FVM

• conservative

discretization

• higher order is

complicated

• complicated for

unstructured grid

FEM

• higher order is easy

• unstructured grid is

not a problem

• not conservative

• poor performance

for convection

dominated

problems

3



F?M

FDM

• easy to implement

• higher order is

complicated

• complicated for

complex geometry

or unstructured

mesh

• not conservative

FVM

• conservative

discretization

• higher order is

complicated

• complicated for

unstructured grid

FEM

• higher order is easy

• unstructured grid is

not a problem

• not conservative

• poor performance

for convection

dominated

problems

3



F?M

FDM

• easy to implement

• higher order is

complicated

• complicated for

complex geometry

or unstructured

mesh

• not conservative

FVM

• conservative

discretization

• higher order is

complicated

• complicated for

unstructured grid

FEM

• higher order is easy

• unstructured grid is

not a problem

• not conservative

• poor performance

for convection

dominated

problems

3



F?M

FDM

• easy to implement

• higher order is

complicated

• complicated for

complex geometry

or unstructured

mesh

• not conservative

FVM

• conservative

discretization

• higher order is

complicated

• complicated for

unstructured grid

FEM

• higher order is easy

• unstructured grid is

not a problem

• not conservative

• poor performance

for convection

dominated

problems

3



F?M

FDM

• easy to implement

• higher order is

complicated

• complicated for

complex geometry

or unstructured

mesh

• not conservative

FVM

• conservative

discretization

• higher order is

complicated

• complicated for

unstructured grid

FEM

• higher order is easy

• unstructured grid is

not a problem

• not conservative

• poor performance

for convection

dominated

problems

3



Weak form & Classical Galerkin

Weak form

−∇ · ν∇u +∇ · (bu) = f in Ω

multiply by v and IBP∫
Ω

ν∇u · ∇v −
∫

Ω

ub · ∇v + BC︸ ︷︷ ︸
a(u,v)

=

∫
Ω

fv︸ ︷︷ ︸
l(v)

Only the first derivative appears in the formula

u, v ∈ V = H1
0 (Ω) = {v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]d , v |Γ = 0}

4



Weak form & Classical Galerkin

Weak form

−∇ · ν∇u +∇ · (bu) = f in Ω

multiply by v and IBP∫
Ω

ν∇u · ∇v −
∫

Ω

ub · ∇v + BC︸ ︷︷ ︸
a(u,v)

=

∫
Ω

fv︸ ︷︷ ︸
l(v)

Only the first derivative appears in the formula

u, v ∈ V = H1
0 (Ω) = {v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]d , v |Γ = 0}

4



Weak form & Classical Galerkin

Weak form

−∇ · ν∇u +∇ · (bu) = f in Ω

multiply by v and IBP∫
Ω

ν∇u · ∇v −
∫

Ω

ub · ∇v + BC︸ ︷︷ ︸
a(u,v)

=

∫
Ω

fv︸ ︷︷ ︸
l(v)

Only the first derivative appears in the formula

u, v ∈ V = H1
0 (Ω) = {v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]d , v |Γ = 0}

4



Finite Element Methods

?u ∈ V : a(u, v) = l(v) ∀v ∈ V

• V is infinite dimensional

• Restrict to a finite dimensional subspace Vh ⊂ V

• Th: mesh over Ω, Vh: piecewise polynomials that are continuous

Vh = {v ∈ L2(Ω) : v ∈ Pk(K ),∀K ∈ Th} ∩ C (Ω)

• Basis with compact support

• Easy to integrate

• Easy to go for high polynomial degree

5



Finite Element Methods

?u ∈ V : a(u, v) = l(v) ∀v ∈ V

• V is infinite dimensional

• Restrict to a finite dimensional subspace Vh ⊂ V

• Th: mesh over Ω, Vh: piecewise polynomials that are continuous

Vh = {v ∈ L2(Ω) : v ∈ Pk(K ),∀K ∈ Th} ∩ C (Ω)

• Basis with compact support

• Easy to integrate

• Easy to go for high polynomial degree

5



Finite Element Methods

?uh ∈ Vh : a(uh, vh) = l(vh) ∀vh ∈ Vh

• V is infinite dimensional

• Restrict to a finite dimensional subspace Vh ⊂ V

• Th: mesh over Ω, Vh: piecewise polynomials that are continuous

Vh = {v ∈ L2(Ω) : v ∈ Pk(K ),∀K ∈ Th} ∩ C (Ω)

• Basis with compact support

• Easy to integrate

• Easy to go for high polynomial degree

5



Finite Element Methods

?uh ∈ Vh : a(uh, vh) = l(vh) ∀vh ∈ Vh

• V is infinite dimensional

• Restrict to a finite dimensional subspace Vh ⊂ V

• Th: mesh over Ω, Vh: piecewise polynomials that are continuous

Vh = {v ∈ L2(Ω) : v ∈ Pk(K ),∀K ∈ Th} ∩ C (Ω)

• Basis with compact support

• Easy to integrate

• Easy to go for high polynomial degree

5



Finite Element Methods

?uh ∈ Vh : a(uh, vh) = l(vh) ∀vh ∈ Vh

• V is infinite dimensional

• Restrict to a finite dimensional subspace Vh ⊂ V

• Th: mesh over Ω, Vh: piecewise polynomials that are continuous

Vh = {v ∈ L2(Ω) : v ∈ Pk(K ),∀K ∈ Th} ∩ C (Ω)

• Basis with compact support

• Easy to integrate

• Easy to go for high polynomial degree

5



Finite Element Methods

?uh ∈ Vh : a(uh, vh) = l(vh) ∀vh ∈ Vh

• V is infinite dimensional

• Restrict to a finite dimensional subspace Vh ⊂ V

• Th: mesh over Ω, Vh: piecewise polynomials that are continuous

Vh = {v ∈ L2(Ω) : v ∈ Pk(K ),∀K ∈ Th} ∩ C (Ω)

• Basis with compact support

• Easy to integrate

• Easy to go for high polynomial degree

5



Finite Element Methods

?uh ∈ Vh : a(uh, vh) = l(vh) ∀vh ∈ Vh

• V is infinite dimensional

• Restrict to a finite dimensional subspace Vh ⊂ V

• Th: mesh over Ω, Vh: piecewise polynomials that are continuous

Vh = {v ∈ L2(Ω) : v ∈ Pk(K ),∀K ∈ Th} ∩ C (Ω)

• Basis with compact support

• Easy to integrate

• Easy to go for high polynomial degree

5



Linear system

Choose a basis of Vh : {Φi , · · · ,ΦN}

Seek the coefficients {ci} such that uh =
∑N

i=1 ciΦi

Linear system

Ac = b

where

• Ai,j = a(Φj ,Φi )

• bi = l(Φi )

• A is very sparse

• Direct or iterative solver?

• Size vs condition number

6



Linear system

Choose a basis of Vh : {Φi , · · · ,ΦN}

Seek the coefficients {ci} such that uh =
∑N

i=1 ciΦi

Linear system

Ac = b

where

• Ai,j = a(Φj ,Φi )

• bi = l(Φi )

• A is very sparse

• Direct or iterative solver?

• Size vs condition number

6



Linear system

Choose a basis of Vh : {Φi , · · · ,ΦN}

Seek the coefficients {ci} such that uh =
∑N

i=1 ciΦi

Linear system

Ac = b

where

• Ai,j = a(Φj ,Φi )

• bi = l(Φi )

• A is very sparse

• Direct or iterative solver?

• Size vs condition number

6



Linear system

Choose a basis of Vh : {Φi , · · · ,ΦN}

Seek the coefficients {ci} such that uh =
∑N

i=1 ciΦi

Linear system

Ac = b

where

• Ai,j = a(Φj ,Φi )

• bi = l(Φi )

• A is very sparse

• Direct or iterative solver?

• Size vs condition number

6



Linear system

Choose a basis of Vh : {Φi , · · · ,ΦN}

Seek the coefficients {ci} such that uh =
∑N

i=1 ciΦi

Linear system

Ac = b

where

• Ai,j = a(Φj ,Φi )

• bi = l(Φi )

• A is very sparse

• Direct or iterative solver?

• Size vs condition number

6



Linear system

Choose a basis of Vh : {Φi , · · · ,ΦN}

Seek the coefficients {ci} such that uh =
∑N

i=1 ciΦi

Linear system

Ac = b

where

• Ai,j = a(Φj ,Φi )

• bi = l(Φi )

• A is very sparse

• Direct or iterative solver?

• Size vs condition number

6



Linear system

Choose a basis of Vh : {Φi , · · · ,ΦN}

Seek the coefficients {ci} such that uh =
∑N

i=1 ciΦi

Linear system

Ac = b

where

• Ai,j = a(Φj ,Φi )

• bi = l(Φi )

• A is very sparse

• Direct or iterative solver?

• Size vs condition number

6



Degrees of Freedoms in 2D

k = 1

k = 2 k = 3

7



Degrees of Freedoms in 2D

k = 1 k = 2

k = 3

7



Degrees of Freedoms in 2D

k = 1 k = 2 k = 3

7



Diffusion Dominated Problem

Consider the advection-diffusion problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ is the diffusion coefficient.

Convergence rates

‖u − uh‖L2(Ω) ≤ Chk+1

8



Diffusion Dominated Problem

Consider the advection-diffusion problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ is the diffusion coefficient.

Convergence rates

‖u − uh‖L2(Ω) ≤ Chk+1

8



κ = 1

Figure 1: ||uCG − ue ||L2 = 4.7704e − 4

9



Pure Advection Problem

Consider the same problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ=0.

10



κ = 0

Figure 2: ||uCG − ue ||L2 = 7.02071

11



DG



Possible improvement: DG

FVM

• numerical fluxes over the

elements

• upwind flux

CG

• higher order discretization

DG

• derive weak form starting from one element

• connection between elements via fluxes

• higher order discretization

12



Possible improvement: DG

FVM

• numerical fluxes over the

elements

• upwind flux

CG

• higher order discretization

DG

• derive weak form starting from one element

• connection between elements via fluxes

• higher order discretization

12



Possible improvement: DG

FVM

• numerical fluxes over the

elements

• upwind flux

CG

• higher order discretization

DG

• derive weak form starting from one element

• connection between elements via fluxes

• higher order discretization

12



Mesh first

Rewrite −∇ · ν∇u +∇ · (bu) = f using q = −∇u

First order system

ν∇ · q +∇ · (bu) = f

q +∇u = 0

IBP on mesh element K + discretization∫
K

fwh =−
∫
K

νqh · ∇wh +

∫
∂K

νq̂h · nwh

−
∫
K

uhb · ∇wh +

∫
∂K

whûhb · n∫
K

qh · vh =−
∫
K

∇uh · vh +

∫
∂K

(uh − ûh)vh · n

13



Mesh first

Rewrite −∇ · ν∇u +∇ · (bu) = f using q = −∇u

First order system

ν∇ · q +∇ · (bu) = f

q +∇u = 0

IBP on mesh element K + discretization∫
K

fwh =−
∫
K

νqh · ∇wh +

∫
∂K

νq̂h · nwh

−
∫
K

uhb · ∇wh +

∫
∂K

whûhb · n∫
K

qh · vh =−
∫
K

∇uh · vh +

∫
∂K

(uh − ûh)vh · n

13



Mesh first

Rewrite −∇ · ν∇u +∇ · (bu) = f using q = −∇u

First order system

ν∇ · q +∇ · (bu) = f

q +∇u = 0

IBP on mesh element K + discretization∫
K

fwh =−
∫
K

νqh · ∇wh +

∫
∂K

νq̂h · nwh

−
∫
K

uhb · ∇wh +

∫
∂K

whûhb · n∫
K

qh · vh =−
∫
K

∇uh · vh +

∫
∂K

(uh − ûh)vh · n

13



1 equation or 2 equations?

If v = ν∇wh∫
K

fwh =

∫
K

ν∇uh · ∇wh +

∫
∂K

(ûh − uh)ν∇wh · n +

∫
∂K

νq̂h · nwh

−
∫
K

uhb · ∇wh +

∫
∂K

whûhb · n

Summing over all K ∈ Th

The interior faces will show up twice

14



1 equation or 2 equations?

If v = ν∇wh∫
K

fwh =

∫
K

ν∇uh · ∇wh +

∫
∂K

(ûh − uh)ν∇wh · n +

∫
∂K

νq̂h · nwh

−
∫
K

uhb · ∇wh +

∫
∂K

whûhb · n

Summing over all K ∈ Th

The interior faces will show up twice

14



1 equation or 2 equations?

If v = ν∇wh∫
K

fwh =

∫
K

ν∇uh · ∇wh +

∫
∂K

(ûh − uh)ν∇wh · n +

∫
∂K

νq̂h · nwh

−
∫
K

uhb · ∇wh +

∫
∂K

whûhb · n

Summing over all K ∈ Th

The interior faces will show up twice

14



Choice of the numerical flux

Advection

Use upwinding

ûh =

{
uL if b · n ≥ 0

uR if b · n < 0

Diffusion part

Plenty of possibilities (see Brezzi-Marini survey)

Interior penalty: q̂h = ∇uL +
α

h
[[uh]] n = ∇uL +

α

h
(uL − uR)n

Example with 2 equations: Local DG: q̂h = qL + τ(uL − uR)n

15



Choice of the numerical flux

Advection

Use upwinding

ûh =

{
uL if b · n ≥ 0

uR if b · n < 0

Diffusion part

Plenty of possibilities (see Brezzi-Marini survey)

Interior penalty: q̂h = ∇uL +
α

h
[[uh]] n = ∇uL +

α

h
(uL − uR)n

Example with 2 equations: Local DG: q̂h = qL + τ(uL − uR)n

15



Choice of the numerical flux

Advection

Use upwinding

ûh =

{
uL if b · n ≥ 0

uR if b · n < 0

Diffusion part

Plenty of possibilities (see Brezzi-Marini survey)

Interior penalty: q̂h = ∇uL +
α

h
[[uh]] n = ∇uL +

α

h
(uL − uR)n

Example with 2 equations: Local DG: q̂h = qL + τ(uL − uR)n

15



Choice of the numerical flux

Advection

Use upwinding

ûh =

{
uL if b · n ≥ 0

uR if b · n < 0

Diffusion part

Plenty of possibilities (see Brezzi-Marini survey)

Interior penalty: q̂h = ∇uL +
α

h
[[uh]] n = ∇uL +

α

h
(uL − uR)n

Example with 2 equations: Local DG: q̂h = qL + τ(uL − uR)n

15



Upwind in 2D

uL

u1
R

n1

u2
R

n2

u3
R

n3

b

b

b

uLu2
R

u1
R

16



Upwind in 2D

uL

u1
R

n1

u2
R

n2

u3
R

n3

b

b

b

uLu2
R

u1
R

16



Upwind in 2D

uL

u1
R

n1

u2
R

n2

u3
R

n3

b

b

b

uLu2
R

u1
R

16



Upwind in 2D

uL

u1
R

n1

u2
R

n2

u3
R

n3

b

b

b

uLu2
R

u1
R

16



IP discretization

IP approximate weak form

Seek uh ∈ Vh such that aDG (uh, vh) = lDG (vh) for all vh ∈ Vh.

Looks like CG, but it is totally different

IP notations

aDG (uh, vh) =
∑
K∈Th

∫
K

ν∇uh · ∇wh −
∑
K∈Th

∫
∂K

uhb · ∇vh

+ interior face terms

lDG (vh) =
∑
K∈Th

∫
K

fvh + BC

Vh ={v ∈ L2(Ω) : v ∈ Pk(K ),∀K ∈ Th}

17



IP discretization

IP approximate weak form

Seek uh ∈ Vh such that aDG (uh, vh) = lDG (vh) for all vh ∈ Vh.

Looks like CG, but it is totally different

IP notations

aDG (uh, vh) =
∑
K∈Th

∫
K

ν∇uh · ∇wh −
∑
K∈Th

∫
∂K

uhb · ∇vh

+ interior face terms

lDG (vh) =
∑
K∈Th

∫
K

fvh + BC

Vh ={v ∈ L2(Ω) : v ∈ Pk(K ),∀K ∈ Th}

17



IP discretization

IP approximate weak form

Seek uh ∈ Vh such that aDG (uh, vh) = lDG (vh) for all vh ∈ Vh.

Looks like CG, but it is totally different

IP notations

aDG (uh, vh) =
∑
K∈Th

∫
K

ν∇uh · ∇wh −
∑
K∈Th

∫
∂K

uhb · ∇vh

+ interior face terms

lDG (vh) =
∑
K∈Th

∫
K

fvh + BC

Vh ={v ∈ L2(Ω) : v ∈ Pk(K ),∀K ∈ Th}

17



2D DG basis functions

k = 1

k = 2 k = 3

18



2D DG basis functions

k = 1 k = 2

k = 3

18



2D DG basis functions

k = 1 k = 2 k = 3

18



CG vs DG pros and cons

CG

• lower number of degrees of

freedom

• diffusion dominated cases are

easier to solve by iterative

methods

• fails for convection dominated

cases

• hard to do hp adaptivity: the

unknowns on different elements

are connected

DG

• higher number of degrees of

freedom

• harder to solve with an iterative

solver

• works better for convection

dominated cases

• hp adaptivity is easy: the

unknowns on different elements

are not connected

19



CG vs DG pros and cons

CG

• lower number of degrees of

freedom

• diffusion dominated cases are

easier to solve by iterative

methods

• fails for convection dominated

cases

• hard to do hp adaptivity: the

unknowns on different elements

are connected

DG

• higher number of degrees of

freedom

• harder to solve with an iterative

solver

• works better for convection

dominated cases

• hp adaptivity is easy: the

unknowns on different elements

are not connected

19



CG vs DG pros and cons

CG

• lower number of degrees of

freedom

• diffusion dominated cases are

easier to solve by iterative

methods

• fails for convection dominated

cases

• hard to do hp adaptivity: the

unknowns on different elements

are connected

DG

• higher number of degrees of

freedom

• harder to solve with an iterative

solver

• works better for convection

dominated cases

• hp adaptivity is easy: the

unknowns on different elements

are not connected

19



CG vs DG pros and cons

CG

• lower number of degrees of

freedom

• diffusion dominated cases are

easier to solve by iterative

methods

• fails for convection dominated

cases

• hard to do hp adaptivity: the

unknowns on different elements

are connected

DG

• higher number of degrees of

freedom

• harder to solve with an iterative

solver

• works better for convection

dominated cases

• hp adaptivity is easy: the

unknowns on different elements

are not connected

19



Diffusion Dominated Problem

Consider the advection-diffusion problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ is the diffusion coefficient.

Convergence rates

‖u − uh‖L2(Ω) ≤ Chk+1

20



Diffusion Dominated Problem

Consider the advection-diffusion problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ is the diffusion coefficient.

Convergence rates

‖u − uh‖L2(Ω) ≤ Chk+1

20



κ = 1

Figure 3: ||uDG − ue ||L2 = 3.8546e − 4

21



Pure Advection Problem

Consider the same problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ=0.

22



κ = 0

Figure 4: ||uDG − ue ||L2 = 3.0956e − 4

23



Idea of HDG



Hybridizable DG

DG

• derive weak form on one element

• connection between elements via fluxes

HDG

• derive weak form on one element

• additional unknowns on the edges

• connection between elements via fluxes that uses functions on the

edges

24



Hybridizable DG

DG

• derive weak form on one element

• connection between elements via fluxes

HDG

• derive weak form on one element

• additional unknowns on the edges

• connection between elements via fluxes that uses functions on the

edges

24



Hybridizable DG

DG

• derive weak form on one element

• connection between elements via fluxes

HDG

• derive weak form on one element

• additional unknowns on the edges

• connection between elements via fluxes that uses functions on the

edges

24



Hybridizable DG

DG

• derive weak form on one element

• connection between elements via fluxes

HDG

• derive weak form on one element

• additional unknowns on the edges

• connection between elements via fluxes that uses functions on the

edges

24



Hybridizable DG

DG

• derive weak form on one element

• connection between elements via fluxes

HDG

• derive weak form on one element

• additional unknowns on the edges

• connection between elements via fluxes that uses functions on the

edges

24



HDG

uh ∈ Vh =
{
vh ∈ L2(Ω), vh ∈ Pk(K ) ∀K ∈ Th

}
uh ∈ V h =

{
vh ∈ L2(F), vh ∈ Pk(F ) ∀F ∈ F

}
25



HDG fluxes

DG fluxes

Advection: upwinding

Diffusion Interior penalty or Local DG or one of the many

HDG fluxes

Advection: ûh =

{
uL if b · n ≥ 0

u if b · n < 0

Diffusion IP: q̂h = ∇uL +
α

h
(uL − u)n

Local DG: q̂h = qL + τ(uL − u)n

26



HDG fluxes

DG fluxes

Advection: upwinding

Diffusion Interior penalty or Local DG or one of the many

HDG fluxes

Advection: ûh =

{
uL if b · n ≥ 0

u if b · n < 0

Diffusion IP: q̂h = ∇uL +
α

h
(uL − u)n

Local DG: q̂h = qL + τ(uL − u)n

26



HDG fluxes

DG fluxes

Advection: upwinding

Diffusion Interior penalty or Local DG or one of the many

HDG fluxes

Advection: ûh =

{
uL if b · n ≥ 0

u if b · n < 0

Diffusion IP: q̂h = ∇uL +
α

h
(uL − u)n

Local DG: q̂h = qL + τ(uL − u)n

26



HDG fluxes

DG fluxes

Advection: upwinding

Diffusion Interior penalty or Local DG or one of the many

HDG fluxes

Advection: ûh =

{
uL if b · n ≥ 0

u if b · n < 0

Diffusion IP: q̂h = ∇uL +
α

h
(uL − u)n

Local DG: q̂h = qL + τ(uL − u)n

26



HDG fluxes

DG fluxes

Advection: upwinding

Diffusion Interior penalty or Local DG or one of the many

HDG fluxes

Advection: ûh =

{
uL if b · n ≥ 0

u if b · n < 0

Diffusion IP: q̂h = ∇uL +
α

h
(uL − u)n

Local DG: q̂h = qL + τ(uL − u)n

26



Upwind for HDG

uL

u1

n1

u2

n2

u3

n3

b

b

b

uLu2

u1

27



Upwind for HDG

uL

u1

n1

u2

n2

u3

n3

b

b

b

uLu2

u1

27



Upwind for HDG

uL

u1

n1

u2

n2

u3

n3

b

b

b

uLu2

u1

27



Upwind for HDG

uL

u1

n1

u2

n2

u3

n3

b

b

b

uLu2

u1

27



2 unknowns but only 1 equation

Solve −u′′ = 1, u(−1) = u(1) = 0 as

How to choose u?

−u′′ = 1 on (−1, 0) −u′′ =1 on (0, 1)

u(−1) = 0 u(0) =u

u(0) = u u(1) =0

u = 0.25 u = 0.5 u = 0.75

Continuous flux

Equation for u: to ensure a continuous flux

28



2 unknowns but only 1 equation

Solve −u′′ = 1, u(−1) = u(1) = 0 as

How to choose u?

−u′′ = 1 on (−1, 0) −u′′ =1 on (0, 1)

u(−1) = 0 u(0) =u

u(0) = u u(1) =0

u = 0.25 u = 0.5 u = 0.75

Continuous flux

Equation for u: to ensure a continuous flux

28



2 unknowns but only 1 equation

Solve −u′′ = 1, u(−1) = u(1) = 0 as

How to choose u?

−u′′ = 1 on (−1, 0) −u′′ =1 on (0, 1)

u(−1) = 0 u(0) =u

u(0) = u u(1) =0

u = 0.25 u = 0.5 u = 0.75

Continuous flux

Equation for u: to ensure a continuous flux

28



HDG Degrees of Freedom

k = 1

k = 2 k = 3

29



HDG Degrees of Freedom

k = 1 k = 2

k = 3

29



HDG Degrees of Freedom

k = 1 k = 2 k = 3

29



Linear problem

Weak form

Seek (uh, uh) ∈ Vh × V h such that forall (vh, vh) ∈ Vh × V h

aHDG ((uh, uh), (vh, vh)) = lHDG (vh, vh)

Linear system System form

aII (uh, vh) + aFI (uh, vh) = lI (vh)

aIF (uh, vh) + aFF (uh, vh) = lF (vh)

Block system [
A B

C D

][
U

U

]
=

[
F

G

]

30



Linear problem

Weak form

Seek (uh, uh) ∈ Vh × V h such that forall (vh, vh) ∈ Vh × V h

aHDG ((uh, uh), (vh, vh)) = lHDG (vh, vh)

Linear system System form

aII (uh, vh) + aFI (uh, vh) = lI (vh)

aIF (uh, vh) + aFF (uh, vh) = lF (vh)

Block system [
A B

C D

][
U

U

]
=

[
F

G

]

30



Linear problem

Weak form

Seek (uh, uh) ∈ Vh × V h such that forall (vh, vh) ∈ Vh × V h

aHDG ((uh, uh), (vh, vh)) = lHDG (vh, vh)

Linear system System form

aII (uh, vh) + aFI (uh, vh) = lI (vh)

aIF (uh, vh) + aFF (uh, vh) = lF (vh)

Block system [
A B

C D

][
U

U

]
=

[
F

G

]

30



Schur-complement

A is block diagonal

AU + BU = F

CU + DU = G
⇔

U = A−1(F − BU)

CA−1(F − BU) + DU = G

Solution in two steps

(D − CA−1B)U = G − CA−1F

U = A−1(F − BU)

31



Schur-complement

A is block diagonal

AU + BU = F

CU + DU = G
⇔

U = A−1(F − BU)

CA−1(F − BU) + DU = G

Solution in two steps

(D − CA−1B)U = G − CA−1F

U = A−1(F − BU)

31



Schur-complement

A is block diagonal

AU + BU = F

CU + DU = G
⇔

U = A−1(F − BU)

CA−1(F − BU) + DU = G

Solution in two steps

(D − CA−1B)U = G − CA−1F

U = A−1(F − BU)

31



Schur-complement

A is block diagonal

AU + BU = F

CU + DU = G
⇔

U = A−1(F − BU)

CA−1(F − BU) + DU = G

Solution in two steps

(D − CA−1B)U = G − CA−1F

U = A−1(F − BU)

31



Diffusion Dominated Problem

Consider the advection-diffusion problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ is the diffusion coefficient.

Convergence rates

‖u − uh‖L2(Ω) ≤ Chk+1

32



Diffusion Dominated Problem

Consider the advection-diffusion problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ is the diffusion coefficient.

Convergence rates

‖u − uh‖L2(Ω) ≤ Chk+1

32



κ = 1

Figure 5: ||uHDG − ue ||L2 = 3.7621e − 4

33



Pure Advection Problem

Consider the same problem

−κ∆u + ~c · ∇u = f in Ω = [0, 1]× [0, 1],

u = gD on Γ = ∂Ω,

with exact solution u(x , y) = sin(6x) sin(6y), f and gD are derived from

this exact solution, ~c = (−1, 1)T and κ=0.

34



κ = 0

Figure 6: ||uHDG − ue ||L2 = 3.0956e − 4

35



Comparison of the degrees of freedom

n × n uniform structured triangular mesh

100 500 1000

1

2

3

4.5
10

7 k = 1

100 500 1000

1

2

3

4.5
10

7 k = 3

100 500 1000

1

2

3

4.5
10

7 k = 5

Degrees of freedom for polynomial degree k = 1, 3, 5.

Continuous line CG, dashed line DG, Continuous line with circles EDG,

dashed line with diamonds HDG
36



Matrix Sizes Demonstration

Consider the Poisson problem

−∆u = f in Ω = [0, 1]× [0, 1]

u = gD on Γ = ∂Ω.

We are going to use the same mesh for all the discretizations.

37



Figure 7: The mesh

38



Matrix Properties k = 2

(a) CG: n=1089, nnz=8961 (b) DG: n=3072, nnz=71424

(c) HDG: n=5472, nnz=76128 (d) SC: n=2400, nnz=34848

39



Matrix Sizes k = 5

Table 1: Matrix size(n) and #Nonzeros(nnz) for different discretizations of

order 5

n nnz

CG 6561 199521

DG 10752 874944

HDG 15552 617664

SC 4800 139392

• Linear system size is smaller than DG, and CG if k ≥ 4.

• HDG is stable for advection-dominated flows.

40



Matrix Sizes k = 5

Table 1: Matrix size(n) and #Nonzeros(nnz) for different discretizations of

order 5

n nnz

CG 6561 199521

DG 10752 874944

HDG 15552 617664

SC 4800 139392

• Linear system size is smaller than DG, and CG if k ≥ 4.

• HDG is stable for advection-dominated flows.

40



Matrix Sizes k = 5

Table 1: Matrix size(n) and #Nonzeros(nnz) for different discretizations of

order 5

n nnz

CG 6561 199521

DG 10752 874944

HDG 15552 617664

SC 4800 139392

• Linear system size is smaller than DG, and CG if k ≥ 4.

• HDG is stable for advection-dominated flows.

40



Matrix Sizes k = 5

Table 1: Matrix size(n) and #Nonzeros(nnz) for different discretizations of

order 5

n nnz

CG 6561 199521

DG 10752 874944

HDG 15552 617664

SC 4800 139392

• Linear system size is smaller than DG, and CG if k ≥ 4.

• HDG is stable for advection-dominated flows.

40



IPDG-H for ADR Problems



General equation

Consider the general advection-diffusion-reaction problem

∇ · (−κ∇u + ~bu) + cu = f in Ω,

u = gD on Γ = ∂Ω.

Rewrite it in mixed form, let q = −κ∇u;

q + κ∇u = 0 in Ω,

∇ · (q + ~bu) + cu = f in Ω,

u = gD on Γ = ∂Ω.

41



General equation

Consider the general advection-diffusion-reaction problem

∇ · (−κ∇u + ~bu) + cu = f in Ω,

u = gD on Γ = ∂Ω.

Rewrite it in mixed form, let q = −κ∇u;

q + κ∇u = 0 in Ω,

∇ · (q + ~bu) + cu = f in Ω,

u = gD on Γ = ∂Ω.

41



Start by meshing the domain Ω; T = {K}, non-overlapping elements,

and,

F i = {F |F = ∂K+
⋂
∂K−} and Fb = {F |F = ∂K

⋂
∂Ω},

F = F i
⋃
Fb.

Assumption; F ∈ F has nonzero (d − 1) Lebesgue measure, where d is

the dimensionality of Ω.

(·, ·)K : standart L2(K )-inner product

< ·, · >F : standart L2(F )-inner product

(·, ·)Ω =
∑

K∈T (·, ·)K

< ·, · >∂Ω=
∑

F∈F < ·, · >F

42



Start by meshing the domain Ω; T = {K}, non-overlapping elements,

and,

F i = {F |F = ∂K+
⋂
∂K−} and Fb = {F |F = ∂K

⋂
∂Ω},

F = F i
⋃
Fb.

Assumption; F ∈ F has nonzero (d − 1) Lebesgue measure, where d is

the dimensionality of Ω.

(·, ·)K : standart L2(K )-inner product

< ·, · >F : standart L2(F )-inner product

(·, ·)Ω =
∑

K∈T (·, ·)K

< ·, · >∂Ω=
∑

F∈F < ·, · >F

42



Start by meshing the domain Ω; T = {K}, non-overlapping elements,

and,

F i = {F |F = ∂K+
⋂
∂K−} and Fb = {F |F = ∂K

⋂
∂Ω},

F = F i
⋃
Fb.

Assumption; F ∈ F has nonzero (d − 1) Lebesgue measure, where d is

the dimensionality of Ω.

(·, ·)K : standart L2(K )-inner product

< ·, · >F : standart L2(F )-inner product

(·, ·)Ω =
∑

K∈T (·, ·)K

< ·, · >∂Ω=
∑

F∈F < ·, · >F

42



Start by meshing the domain Ω; T = {K}, non-overlapping elements,

and,

F i = {F |F = ∂K+
⋂
∂K−} and Fb = {F |F = ∂K

⋂
∂Ω},

F = F i
⋃
Fb.

Assumption; F ∈ F has nonzero (d − 1) Lebesgue measure, where d is

the dimensionality of Ω.

(·, ·)K : standart L2(K )-inner product

< ·, · >F : standart L2(F )-inner product

(·, ·)Ω =
∑

K∈T (·, ·)K

< ·, · >∂Ω=
∑

F∈F < ·, · >F

42



Now, define the spaces,

Rh = {rh ∈
[
L2(Ω)

]d
, rh ∈ [Pk(K )]d ∀K ∈ T }

Vh = {Vh ∈ L2(Ω), vh ∈ Pk(K ) ∀K ∈ T }

and multiply by test functions r , v over Ω, and integrate,

(q, r)Ω + (κ∇u, r)Ω = 0

(∇ · (q + ~bu), v)Ω + (cu, v)Ω = (f , v)Ω.

Project the boundary conditions to boundary faces and enforce them

strongly

43



Now, define the spaces,

Rh = {rh ∈
[
L2(Ω)

]d
, rh ∈ [Pk(K )]d ∀K ∈ T }

Vh = {Vh ∈ L2(Ω), vh ∈ Pk(K ) ∀K ∈ T }

and multiply by test functions r , v over Ω, and integrate,

(q, r)Ω + (κ∇u, r)Ω = 0

(∇ · (q + ~bu), v)Ω + (cu, v)Ω = (f , v)Ω.

Project the boundary conditions to boundary faces and enforce them

strongly

43



Now apply integration by parts wherever it is necessary,

From first line,

(q, r)Ω = (u, κ∇ · r)Ω− < û, κr · n >∂Ω

= −(κ∇u, r)Ω+ < u − û, κr · n >∂Ω .

Second line is longer, consists more terms, hard to keep it tidy,

− (~bu,∇v)Ω+ < ~̂bu · ~n, v >∂Ω

− (q,∇v)Ω+ < q̂ · ~n, v >∂Ω +(cu, v)Ω = (f , v)Ω.

44



Now apply integration by parts wherever it is necessary,

From first line,

(q, r)Ω = (u, κ∇ · r)Ω− < û, κr · n >∂Ω

= −(κ∇u, r)Ω+ < u − û, κr · n >∂Ω .

Second line is longer, consists more terms, hard to keep it tidy,

− (~bu,∇v)Ω+ < ~̂bu · ~n, v >∂Ω

− (q,∇v)Ω+ < q̂ · ~n, v >∂Ω +(cu, v)Ω = (f , v)Ω.

44



Now apply integration by parts wherever it is necessary,

From first line,

(q, r)Ω = (u, κ∇ · r)Ω− < û, κr · n >∂Ω

= −(κ∇u, r)Ω+ < u − û, κr · n >∂Ω .

Second line is longer, consists more terms, hard to keep it tidy,

− (~bu,∇v)Ω+ < ~̂bu · ~n, v >∂Ω

− (q,∇v)Ω+ < q̂ · ~n, v >∂Ω +(cu, v)Ω = (f , v)Ω.

44



To reduce the number of these equations, pick r = ∇v and substitute

(q, r)Ω for (q,∇v)Ω

−(~bu,∇v)Ω+ < ~̂bu · ~n, v >∂Ω +(κ∇u,∇v)Ω

− < u − û, κ∇v · n >∂Ω + < q̂ · ~n, v >∂Ω +(cu, v)Ω = (f , v)Ω.

It might be desirable to keep the mixed form sometimes, i.e. for

superconvergent methods with diffusion dominated problems.

Introduce λ ∈ Mh, where,

Mh = {µh ∈ L2(F), µh ∈ Pk(F ) ∀F ∈ F}

which is a function that only exists on the faces of the elements.

45



To reduce the number of these equations, pick r = ∇v and substitute

(q, r)Ω for (q,∇v)Ω

−(~bu,∇v)Ω+ < ~̂bu · ~n, v >∂Ω +(κ∇u,∇v)Ω

− < u − û, κ∇v · n >∂Ω + < q̂ · ~n, v >∂Ω +(cu, v)Ω = (f , v)Ω.

It might be desirable to keep the mixed form sometimes, i.e. for

superconvergent methods with diffusion dominated problems.

Introduce λ ∈ Mh, where,

Mh = {µh ∈ L2(F), µh ∈ Pk(F ) ∀F ∈ F}

which is a function that only exists on the faces of the elements.

45



To reduce the number of these equations, pick r = ∇v and substitute

(q, r)Ω for (q,∇v)Ω

−(~bu,∇v)Ω+ < ~̂bu · ~n, v >∂Ω +(κ∇u,∇v)Ω

− < u − û, κ∇v · n >∂Ω + < q̂ · ~n, v >∂Ω +(cu, v)Ω = (f , v)Ω.

It might be desirable to keep the mixed form sometimes, i.e. for

superconvergent methods with diffusion dominated problems.

Introduce λ ∈ Mh, where,

Mh = {µh ∈ L2(F), µh ∈ Pk(F ) ∀F ∈ F}

which is a function that only exists on the faces of the elements.

45



Define the fluxes using λ, to get IP-HDG derivation,

~̂bu · ~n = ~bu · ~n + ζ~b · ~n (λ− u) = (1− ζ) ~bu · ~n + ζ~b · ~nλ,
û = λ,

q̂ = −κ∇u − α

hK
κ~n(λ− u),

where ζ is an indicator function for interelement boundary (1 for inflow, 0

for outflow).

2 unknowns: λ and u, 1 equation! Enforce continuity of the fluxes

through faces;

(
< ~̂bu · ~n, µ >∂Ω + < q̂ · ~n, µ >∂Ω

)
= 0.

46



Define the fluxes using λ, to get IP-HDG derivation,

~̂bu · ~n = ~bu · ~n + ζ~b · ~n (λ− u) = (1− ζ) ~bu · ~n + ζ~b · ~nλ,
û = λ,

q̂ = −κ∇u − α

hK
κ~n(λ− u),

where ζ is an indicator function for interelement boundary (1 for inflow, 0

for outflow).

2 unknowns: λ and u, 1 equation! Enforce continuity of the fluxes

through faces;

(
< ~̂bu · ~n, µ >∂Ω + < q̂ · ~n, µ >∂Ω

)
= 0.

46



Define the fluxes using λ, to get IP-HDG derivation,

~̂bu · ~n = ~bu · ~n + ζ~b · ~n (λ− u) = (1− ζ) ~bu · ~n + ζ~b · ~nλ,
û = λ,

q̂ = −κ∇u − α

hK
κ~n(λ− u),

where ζ is an indicator function for interelement boundary (1 for inflow, 0

for outflow).

2 unknowns: λ and u, 1 equation!

Enforce continuity of the fluxes

through faces;

(
< ~̂bu · ~n, µ >∂Ω + < q̂ · ~n, µ >∂Ω

)
= 0.

46



Define the fluxes using λ, to get IP-HDG derivation,

~̂bu · ~n = ~bu · ~n + ζ~b · ~n (λ− u) = (1− ζ) ~bu · ~n + ζ~b · ~nλ,
û = λ,

q̂ = −κ∇u − α

hK
κ~n(λ− u),

where ζ is an indicator function for interelement boundary (1 for inflow, 0

for outflow).

2 unknowns: λ and u, 1 equation! Enforce continuity of the fluxes

through faces;

(
< ~̂bu · ~n, µ >∂Ω + < q̂ · ~n, µ >∂Ω

)
= 0.

46



Weak formulation

Find (u, λ) ∈ Vh ×Mh s.t. ∀(v , µ) ∈ Vh ×Mh,

−(~bu,∇v)Ω+ < ~̂bu · ~n, v >∂Ω +(κ∇u,∇v)Ω

− < u − û, κ∇v · n >∂Ω + < q̂ · ~n, v >∂Ω +(cu, v)Ω = (f , v)Ω,

and,

−
(
< ~̂bu · ~n, µ >∂Ω + < q̂ · ~n, µ >∂Ω

)
= 0.

47



Block structure

Contents of each block,[
[0] [1]

[2] [3]

]
=

[
(u, v) (λ, v)

(u, µ) (λ, µ)

]
.

Reminder: First block is block diagonal, so Schur complement of this

system is easy to compute.

48



Advantages

• Smaller linear system to solve

• Usually more accurate

• Better conditioned

Better for fluid dynamics problems;

• H(div)-conforming spaces

• Exactly pointwise divergence free velocity fields (incompressibility)

• Mass conservation

• Momentum conservation

• Energy stability (transient problems)

49



Advantages

• Smaller linear system to solve

• Usually more accurate

• Better conditioned

Better for fluid dynamics problems;

• H(div)-conforming spaces

• Exactly pointwise divergence free velocity fields (incompressibility)

• Mass conservation

• Momentum conservation

• Energy stability (transient problems)

49



IPDG-H for the Stokes Problem



The Stokes Problem

Given I = (t0, tf ], f : Ω×I → Rd and u0 = Ω×t0 → Rd , the Stokes

problem for u : Ω×I → Rd is

∂tu +∇ · σ = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ = ∂Ω,∫
Ω

pdx= 0,

where σ = pI−∇u.

50



Define the spaces,

Vh = {vh ∈
[
L2(T )

]d
, vh ∈ [Pk(K )]d ∀K ∈ T }

V̄h = {v̄h ∈
[
L2(F)

]d
, v̄h ∈ [Pk(F )]d ∀F ∈ F}

Qh = {qh ∈ L2(T ), qh ∈ Pk−1(K ) ∀K ∈ T }
Q̄h = {q̄h ∈ L2(F), q̄h ∈ Pk(F ) ∀F ∈ F}

51



Weak formulation

Find (u, ū, p, p̄) ∈ Vh × V̄h × Qh × Q̄h s.t.

∀(v , v̄ , q, q̄) ∈ Vh × V̄h × Qh × Q̄h,

∑
K∈T

∫
K

∇u : ∇v dx +
∑
K∈T

∫
∂K

(ū − u) · ∂v
∂n

ds −
∑
K∈T

∫
K

p∇ · v dx

+
∑
K∈T

∫
∂K

σ̂n · (v − v̄) · ds =
∑
K∈T

∫
K

f · v dx

and ∑
K∈T

∫
K

u · ∇q dx +
∑
K∈T

∫
∂K

û · n(q̄ − q) ds −
∫

Γ

ū · nq̄ ds = 0.

52



Numerical Fluxes

σ̂ = −∇u + p̄I − αv

hK
(ū − u)⊗ n,

û = u − αphK (p̄ − p)n.

Vh = {vh ∈
[
L2(T )

]d
, vh ∈ [Pk(K )]d ∀K ∈ T }

Qh = {qh ∈ L2(T ), qh ∈ Pk−1(K ) ∀K ∈ T }

αp can be set to zero.

53



Numerical Fluxes

σ̂ = −∇u + p̄I − αv

hK
(ū − u)⊗ n,

û = u − αphK (p̄ − p)n.

Vh = {vh ∈
[
L2(T )

]d
, vh ∈ [Pk(K )]d ∀K ∈ T }

Qh = {qh ∈ L2(T ), qh ∈ Pk−1(K ) ∀K ∈ T }

αp can be set to zero.

53



Some Insights to Weak Formulation

∑
K∈T

∫
K

∇u : ∇v dx +
∑
K∈T

∫
∂K

(ū − u) · ∂v
∂n

ds −
∑
K∈T

∫
K

p∇ · v dx

+
∑
K∈T

∫
∂K

σ̂n · (v − v̄) · ds =
∑
K∈T

∫
K

f · v dx

Setting v̄ = 0, momentum balance subject to b.c. provided by ū

Setting v = 0, weak continuity of σ̂ across facets

54



Some Insights to Weak Formulation

∑
K∈T

∫
K

∇u : ∇v dx +
∑
K∈T

∫
∂K

(ū − u) · ∂v
∂n

ds −
∑
K∈T

∫
K

p∇ · v dx

+
∑
K∈T

∫
∂K

σ̂n · (v − v̄) · ds =
∑
K∈T

∫
K

f · v dx

Setting v̄ = 0, momentum balance subject to b.c. provided by ū

Setting v = 0, weak continuity of σ̂ across facets

54



Some Insights to Weak Formulation

∑
K∈T

∫
K

∇u : ∇v dx +
∑
K∈T

∫
∂K

(ū − u) · ∂v
∂n

ds −
∑
K∈T

∫
K

p∇ · v dx

+
∑
K∈T

∫
∂K

σ̂n · (v − v̄) · ds =
∑
K∈T

∫
K

f · v dx

Setting v̄ = 0, momentum balance subject to b.c. provided by ū

Setting v = 0, weak continuity of σ̂ across facets

54



Some Insights to Weak Formulation

∑
K∈T

∫
K

u · ∇q dx +
∑
K∈T

∫
∂K

û · n(q̄ − q) ds −
∫

Γ

ū · nq̄ ds = 0.

Setting q̄ = 0, enforcing the continuity equation locally

Setting q = 0, weak continuity of û across facets

55



Some Insights to Weak Formulation

∑
K∈T

∫
K

u · ∇q dx +
∑
K∈T

∫
∂K

û · n(q̄ − q) ds −
∫

Γ

ū · nq̄ ds = 0.

Setting q̄ = 0, enforcing the continuity equation locally

Setting q = 0, weak continuity of û across facets

55



Some Insights to Weak Formulation

∑
K∈T

∫
K

u · ∇q dx +
∑
K∈T

∫
∂K

û · n(q̄ − q) ds −
∫

Γ

ū · nq̄ ds = 0.

Setting q̄ = 0, enforcing the continuity equation locally

Setting q = 0, weak continuity of û across facets

55



Properties

H(div)-conforming: normal component of u is continuous across

inter-element boundaries

Set v , v̄ , q = 0 and sum the weak formulation equations to see.

Pointwise divergence-free: ∇ · u = 0

Since q,∇ · u ∈ Pk−1(K ), it follows.

Mass Conservation: [[u]] = 0 at interior faces and u · n = ū · n at

boundary faces.

Momemtum Conservation: d
dt

∫
K
u dx =

∫
K
f dx −

∫
∂K
σ̂n ds

Global energy stability: d
dt

∫
K
|u|2 dx ≤ 0.

56



Properties

H(div)-conforming: normal component of u is continuous across

inter-element boundaries

Set v , v̄ , q = 0 and sum the weak formulation equations to see.

Pointwise divergence-free: ∇ · u = 0

Since q,∇ · u ∈ Pk−1(K ), it follows.

Mass Conservation: [[u]] = 0 at interior faces and u · n = ū · n at

boundary faces.

Momemtum Conservation: d
dt

∫
K
u dx =

∫
K
f dx −

∫
∂K
σ̂n ds

Global energy stability: d
dt

∫
K
|u|2 dx ≤ 0.

56



Properties

H(div)-conforming: normal component of u is continuous across

inter-element boundaries

Set v , v̄ , q = 0 and sum the weak formulation equations to see.

Pointwise divergence-free: ∇ · u = 0

Since q,∇ · u ∈ Pk−1(K ), it follows.

Mass Conservation: [[u]] = 0 at interior faces and u · n = ū · n at

boundary faces.

Momemtum Conservation: d
dt

∫
K
u dx =

∫
K
f dx −

∫
∂K
σ̂n ds

Global energy stability: d
dt

∫
K
|u|2 dx ≤ 0.

56



Properties

H(div)-conforming: normal component of u is continuous across

inter-element boundaries

Set v , v̄ , q = 0 and sum the weak formulation equations to see.

Pointwise divergence-free: ∇ · u = 0

Since q,∇ · u ∈ Pk−1(K ), it follows.

Mass Conservation: [[u]] = 0 at interior faces and u · n = ū · n at

boundary faces.

Momemtum Conservation: d
dt

∫
K
u dx =

∫
K
f dx −

∫
∂K
σ̂n ds

Global energy stability: d
dt

∫
K
|u|2 dx ≤ 0.

56



Properties

H(div)-conforming: normal component of u is continuous across

inter-element boundaries

Set v , v̄ , q = 0 and sum the weak formulation equations to see.

Pointwise divergence-free: ∇ · u = 0

Since q,∇ · u ∈ Pk−1(K ), it follows.

Mass Conservation: [[u]] = 0 at interior faces and u · n = ū · n at

boundary faces.

Momemtum Conservation: d
dt

∫
K
u dx =

∫
K
f dx −

∫
∂K
σ̂n ds

Global energy stability: d
dt

∫
K
|u|2 dx ≤ 0.

56



Properties

H(div)-conforming: normal component of u is continuous across

inter-element boundaries

Set v , v̄ , q = 0 and sum the weak formulation equations to see.

Pointwise divergence-free: ∇ · u = 0

Since q,∇ · u ∈ Pk−1(K ), it follows.

Mass Conservation: [[u]] = 0 at interior faces and u · n = ū · n at

boundary faces.

Momemtum Conservation: d
dt

∫
K
u dx =

∫
K
f dx −

∫
∂K
σ̂n ds

Global energy stability: d
dt

∫
K
|u|2 dx ≤ 0.

56



Properties

H(div)-conforming: normal component of u is continuous across

inter-element boundaries

Set v , v̄ , q = 0 and sum the weak formulation equations to see.

Pointwise divergence-free: ∇ · u = 0

Since q,∇ · u ∈ Pk−1(K ), it follows.

Mass Conservation: [[u]] = 0 at interior faces and u · n = ū · n at

boundary faces.

Momemtum Conservation: d
dt

∫
K
u dx =

∫
K
f dx −

∫
∂K
σ̂n ds

Global energy stability: d
dt

∫
K
|u|2 dx ≤ 0.

56


	(Not so) Brief Overview
	Discontinuous Galerkin
	Idea of Hybridizable Discontinuous Galerkin
	IPDG-H for Advection-Diffusion-Reaction Problems
	IPDG-H for the Stokes Problem

